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Abstract

Spatial computing aims at providing a scalable framework where computation
is distributed on a uniform computing medium and communication happen lo-
cally between nearest neighbors. We study the particular framework of cellular
automata, using a regular grid and synchronous update. As a first step towards
generic computation, we propose to develop primitives allowing to structure the
medium around a set of particles. We consider three problems of geometrical
nature: moving the particles on the grid in order to uniformize the density,
constructing their convex hull, constructing a connected proximity graph es-
tablishing connection between nearest particles. The last two problems are
considered for multidimensional grid while uniformization is solved specifically
for the one dimensional grid.

The work approach is to consider the metric space underlying the cellular
automata topology and construct generic mathematical object based solely on
this metric. As a result, the algorithms derived from the properties of those
objects, generalize over arbitrary regular grid. We implemented the usual ones,
including hexagonal, 4 neighbors, and 8 neighbors square grid.

All the solutions are based on the same basic component: the distance field,
which associates to each site of the space its distance to the nearest parti-
cle. While the distance values are not bounded, it is shown that the difference
between the values of neighboring sites is bounded, enabling encoding of the
gradient into a finite state field. Our algorithms are expressed in terms of move-
ments according to such gradient, and also detecting patterns in the gradient,
and can thus be encoded in finite state of automata, using only a dozen of state.
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Chapter 1

Introduction

Contents

1.1 Spatial Computing Framework . . . . . . . . . . . 12

1.1.1 From Massively Distributed Architectures . . . . . . . 13

1.1.2 From Classical Physics and Universality . . . . . . . . 14

1.1.3 . . . to Spatial Computers . . . . . . . . . . . . . . . . 15

1.2 Programming Spatial Computers . . . . . . . . . . 16

1.3 Points, Distances and Cellular Automata . . . . . 18

Shortly stated, this document is about programming cellular automata from
the perspective of spatial computing. This introduction is mainly about spatial
computing. It also summarizes the content of the document and contrast it with
other works and approaches in the domains of spatial computing and cellular
automata.

Section 1.1 explains what spatial computing is and provides with its practical
and fundamental rationales. It shows that the programming of efficient mas-
sively distributed systems necessarily involves geometric considerations. This
comes from the fact that the processing elements of the distributed system
have a spatial arrangement in the physical world and the fact that the com-
munication time between two processing elements is physically related to the
distance between them. This latter property, called locality, relates communi-
cation time and distance in a way that in turn relates efficiency with geometry.
This consideration affects the programming of these systems and specific com-
puting models are thus required, typical examples being cellular automata and
amorphous computers and they will be presented.

Section 1.2 gives some background on spatial computer programming. In
addition to the geometric considerations, this programming is also affected by
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the particular nature of this geometry. Indeed, classical geometry and physics
are expressed continuously, in the mathematical sense, while the set of process-
ing elements positions forms a discrete set of points. More precisely, classical
geometry is Euclidean and some works consider this discrete set of points as an
approximation of this Euclidean original physical space. In contrast, I advocate
that forgetting this Euclidean geometry to concentrate solely on the new geo-
metrical space made of this discrete set of processing elements and its intrinsic
properties allows more precise results to be derived. This shall be achieved by
placing the properties of the intrinsic distance of this new geometrical space at
the center of the framework, the rationale of this thesis being the following:

As geometry is deeply based on the notion of distance, basing spatial algorithms
on the intrinsic distance corresponding to the considered spatial system allows

them to be expressed in a more generic and reusable way.

This thesis is exemplified in the remaining chapters in roughly three stages and
Section 1.3 describes their contents and their organizations. Still, let us have a
quick look at them here before diving into the subject of Spatial Computing.

At the first stage, a spatial computing framework is introduced with a high-
light on the distance information at the local level. This framework is based
on the cellular automata framework, one of the simplest and oldest model of
fine-grained massively distributed systems. Its simple design allows both to fo-
cus on the locality property and to ease the derivation of formal results. At the
second stage, a building block algorithm is described. It is called distance field
and it provides distance information at a global level. Its computation requires
a small and constant number of states that does not depend on the size of space.

At the third and final stage, three challenging problems are solved by trans-
lating them entirely in terms of distances. All of them consider a set of particles,
corresponding to agents in a space or tasks in a distributed systems. We either
want these particles to move in order to match some geometrical criterion, as it
is the case for density uniformization problem, or want to build some geomet-
rical structure, the convex hull and a special kind of communication graph in
our case. Each problem is then iteratively transformed into an algorithm that
uses distance fields and detection of distance patterns. The resulting algorithms
only requires a small and constant number of states, thanks to the distance
fields, and works directly for many different cellular space (square, hexagonal,
tridimensional and so on), thanks to the distance-only approach.

1.1 Spatial Computing Framework

Spatial computing is primarily about parallel processing. As already said, it
focuses on systems being massively distributed, fine-grained and having the lo-
cality property. Rather than an entirely new model, it consists of a class of
well-established and cutting-edge models, from cellular automata and its gener-
alization to amorphous computers. These models are used for a large number of
applications from physics simulation, wireless communication, sensor networks
to high performance computing for instance. Spatial computing was the subject
of many workshops, the first one in 2006 at Dagstuhl [2]. An annual workshop
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also takes place in the IEEE Conference on Self-Adaptative and Self-
Organizing Systems from 2008.

In this section, we begin by giving the rationale of spatial computers from
a practical point of view, considering spatial computers as a generalization of
many massively distributed architectures. Then we provide with a fundamental
rationale by considering spatial computers as universal implementation of clas-
sical physics features. Both of these considerations lead to the same definition
and explain the large variety of works in the domain.

1.1.1 From Massively Distributed Architectures . . .

Parallelism is nowadays present in all levels of computer science. Computer
architectures incorporate parallelism at the instruction level, with pipelines for
example, and by incorporating many cores in a single processor. Also, it is often
the case that computers have many processors and that many computers are
used together to accomplish a task. If one looks at what is inside a processor,
many electronic components corresponding to billions of transistors are com-
bined together and work in parallel.

Beside computers, other kinds of computing platforms exist. Some of them
are based on electronics, such as Field-Programmable Gate Arrays architectures,
better known as FPGA, and sensor networks. Others consider unconventional
computing medium such as DNA computing [48] and other biological systems
based on bacteria for instance; or nanotechnology with nano-tubes [40, 22]; or
chemistry where the reactions between molecules are used in a computational
way [7].

Even if the natures of the processing elements of these different systems are
different (electronic, biological, chemical, etc), these systems share many prop-
erties. First, they have a huge number of fine-grain processing elements working
in parallel. They are programmed at the level of their processing elements but
each processing element alone is useless, only the combination of all of them
is meaningful. Another fundamental common property of these systems is that
their processing elements can only communicate with their neighboring process-
ing elements. Non-neighbor elements need many steps to exchange information,
the communication time between two elements being therefore proportional to
their distance in a corresponding communication graph. This is called the lo-
cality property or locality constraints.

The only platform that seems not to share these properties is computers.
Of course, when many of them is considered in grids of processors and grids of
computers, these properties are respected. These properties are also present at
the transistor level, whose appropriate complexity model is the classical VLSI
model [30] which gives a central position to the locality property. But, single
processors are traditionally considered using the so-called Von Neumann archi-
tecture model. However, the situation has been changing in the last years as
more performance was required, and their model evolves continuously and tends
to incorporate these properties more and more.
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Indeed, the Von Neumann architecture considers a sequence of instructions
executed one at a time and modifying a unique global memory, with constant
speed of access to the memory content. This can clearly not scale to arbitrary
high memory size without a big performance penalty or violating the locality
property. However, this model has been continuously modified to optimize per-
formances and current processors execute many instructions in parallel and have
many levels of caches. The interesting thing is that most of these performance-
guided modifications have been possible because of the locality principle, also
known as locality of reference and including spatial, temporal, and other kind of
locality [16]. Also, processors have more and more cores of smaller size, which
shows that the original low level distribution and locality of the transistors tend
to be restored.

This gradual incorporation of the locality property is not surprising, as it
is a physical constraints, and computers are only physical devices. Also, any
parallelism is necessarily inherited from the parallelism of the physical world.
Let us go further in this fundamental argument.

1.1.2 From Classical Physics and Universality . . .

A parallel can be drawn between the Turing machines and the universal Tur-
ing machines on one side, and the physical world and spatial computers on the
other side. In fact, we can rationalize the definition of spatial computers as
a pseudo-universal physical world. This parallel is particularly enlightening to
understand the core motivation of all spatial computing models. Note that the
term “universal” often covers different related meaning. In this section, it is used
with the following sense: an instance of a model is universal if it can simulate
any other instance of the model while conserving its complexity. That is to say
that we do not only mean universality in terms of computability, as it is often
the case, but also in terms of complexity.

To make the parallel more precise, let us make a point by point comparison.
On the side of Turing machines and universal Turing machines, we have the
following:

• The model of Turing machines describes how a given machine, described
by a finite state automaton, evolves from an initial state, i.e. an initial
automaton state and an initial tape.

• The model of Turing machines is powerful because any computable func-
tion can be computed by a Turing machines. In general, a given Turing
machine only implements one computable function.

• There are Turing machines that can simulate any other Turing machine
while conserving its same complexity in space and time. They are called
universal Turing machines.

On the side of physical world and spatial computers, we have the followings:

• The physical world can be thought as a set of rules that describes how
a given mechanism, described in physical terms, evolves from an initial
state.



1.1. Spatial Computing Framework 15

• The physical world is the most powerful framework simply because any-
thing is necessarily implemented in the physical world. In general, one
consider one mechanism, or machine, for a particular purpose.

• There are machines that can simulate physics, and therefore any other
mechanism or machine while conserving its complexity in space and time.
They are called spatial computers.

To put it concisely, in the same way as a universal Turing machine is an imple-
mentation in the Turing machine framework of the Turing machine framework, a
spatial computer is merely an implementation in the physical world of the phys-
ical world. Of course, this is only a hypothetical statement, since one should
prove that all physical phenomenon can be simulated on a spatial computer.
However, spatial computer seems to implement enough of the physical features
to simulate many physical phenomenon and also any possible computing models
that fits with the classical physics constraints.

In fact, spatial computers are currently the best platform for fine-grained
physical simulation, and many physical phenomenon have been successfully re-
produced, as exemplified in the next paragraph. Indeed, as just said, spatial
computers really looks like universal physical world in some important aspect.
Said differently, spatial computers are “programmable spaces”. Indeed, physics
is such that computations happen everywhere and at every time in the same
manner in the physical space. Comparatively, spatial computers consider vir-
tually as many processing elements that there are points in the space. Also,
each processing elements only has a very small amount of memory, so that the
memory capacity and the processing power are both uniformly distributed in
the space. This respect the fact that a single point is meaningless in physics,
but only a volume of space needs to be considered. Finally, communications
between processing elements are local, to respect the locality of the physical
world. In terms of communication links, these links needs all to be shorter than
a given bounding length.

While only these few features of physics are implemented in spatial com-
puters, a wide range of works using cellular automata, lattice gas, amorphous
computer and other spatial computers shows that physics phenomena can by
simulated [13, 26, 42]. Just to cite one famous example, gases thermodynamic
physics has been perfectly reproduced with an hexagonal cellular automata
called FHP [18, 25]. On an amorphous computer, wave propagation has also
been precisely reproduced [42]. A simulation of electronic circuit on cellular
automata is WireWorld, created by Brian Silverman and popularize in [17]. All
the electronic components and the logical gates required to build a computer can
be simulated, illustrating that a spatial computer can implement any electronic
computer.

1.1.3 . . . to Spatial Computers

It is now clear that the spatial computing framework arises from a kind of
convergence between practical needs and fundamental properties. Since spatial
computers have been defined in two different ways in the previous sections, a
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summary definition might clarify what spatial computers are: a spatial com-
puter is made of an infinite set of processing elements distributed uniformly in
a space, each processing elements having a small bounded memory and being
able to communicate only with the neighboring processing elements.

As already said, there are many examples of spatial computers and we have
already cited a few. The most classical ones are cellular automata, where the
processing elements are organized as a crystalline spatial structure, with syn-
chronicity of processings and communications. Another example is amorphous
computers [3, 15], where the processing elements are randomly and uniformly
distributed in the space, and no synchronicity is assumed. As shown in the pre-
vious sections, both of these frameworks are useful for modeling and simulating
massively distributed systems, such as grids of processors or sensor networks,
and simulating physical phenomena.

1.2 Programming Spatial Computers

We described the spatial computing framework and why we consider their pro-
gramming. We now describe the programming itself. Programming spatial
computers is very different from common programming, even distributed. As
already said, a processing element alone cannot do anything, so that any com-
putation has to happen “in space”, forgetting thus pure “in time” computations,
dictated by the one-at-a-time approach of the Von Neumann architecture. In
some aspect, programming a spatial computer is like writing “physical laws”
even if the goal is not to obtain a physical simulation. The goal is usually ex-
pressed in terms of a global behavior while the systems is programmed by local
rules executed by the individual processing elements. This global/local mapping
is generally difficult to obtain, since spatial computers belongs to the class of
complex systems.

There are many results in the sometime long history of models corresponding
to spatial computers. Platforms have been developed to write the local rules
in an appropriate manner and simulates their execution. To name a recent
platform, the MGS [21, 20] project allows to apply transformation correspond-
ing to local rewriting rules to any abstract space, hence allowing to simulate
many spatial computers. Thus, models based on chemical reactions, tackled
by the specific platform Gamma [11], or based on encapsulated membranes,
such as the P-systems [41] and BioAmbients [43], can be considered in the
same platform. MGS transformation can also modify the space, which eases
the expression of embryogenic and morphogenic phenomena models. Another
project called Proto proposes an abstraction of the discreteness of the system
space and consider operators to account of local communication, the processing
process, and the composition of information as if the space was continuous in
space and time. Many other platforms exist, but we use none of them in this
document. Instead, we simply describe the framework with all the details and
provide the algorithms using a mathematical rather than a programming for-
mulation.
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On the algorithmic part, many results have been obtained involving geomet-
rical structures that can be used for their own sake or to achieve a more general
goal. In cellular automata, examples are the computation of the Voronoï dia-
gram [4] of a set of points or the computation their convex hull. The Voronoï
diagram partitions the space and also implicitly establishes a network by using
the Delaunay triangulation and the convex hull wraps the set points and materi-
alizes the privileged region of communication between the points. However, the
provided solutions are only valid for a particular grid. The solutions presented
in this document work for many grids, even tridimensional.

On amorphous computers [3], algorithms have been design that compute a
set of coordinates for each processing element, manipulates particles that emit
gradients and move along them [15, 38], and these algorithms are made com-
posable by specific languages such as the Growing Point Language [15] or
Origami Language [38]. However, most of these results produces static patterns
and circuits. Also, the memory required by these algorithms is often depen-
dent on the size of the space and the number of considered particles. While we
concentrate on regular spaces, the techniques we will present also rely a lot on
the notion of gradient, but in a dynamic and finite-state way. Moreover these
techniques are simple and can be used on amorphous computers.

On the composition part, this document presents buildings bolcks that are
combined together to solve bigger problems. Proto platform and many works
on amorphous computers consider the processing element discrete space as an
approximation of the original physical space. The results of their algorithms
are therefore compared with results on continuous space and errors are calcu-
lated [10]. This is a requirement for problems where the original space in the
center of interest, such as application where some agent needs to be guided in
the real environment. However, applications in computer architecture or wire-
less communication may not consider the original space at all but only need to
optimize some communication time for example. For these applications, con-
sidering the building blocks having errors is a problem as the error is likely to
grow as many blocks are combined together. We choose another approach that
consider the discrete programmable space directly, as if the original space does
not exist by any other mean than by the properties conserved by the discrete
programmable space. The choice of approach depends on which space is the
main focus of the algorithm.

Note that the results presented in this document were almost all initially
designed by thinking in terms of Euclidean space, and by managing the errors
and problems due to the discretization afterward. But as more precision were
necessary to improve the predictability of the system, or simply to obtain generic
mathematical results, the Euclidean-based approach has been replaced by the
generic cellular metric space approach. Coming back to the basics, every geo-
metrical properties are consequences of the properties of the considered space
metric. The chosen approach is, thus, to consider directly the metric of cellular
spaces in order to obtain results that naturally match the structure of the space,
improving also composability and modularity.
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1.3 Points, Distances and Cellular Automata

Early, and sometimes very early versions of chapters 3, 4, 5 and 6 has already
been published as four different articles [33, 34, 36, 35]. Apart from results
improvements, one big difference between the chapters and their associated ar-
ticles is that they are now expressed more details with the unifying framework
described in chapter 2 and refined in chapter 3. Let us describe more precisely
the content of each chapter.

In Chapter 2, we describe the cellular automata framework, justifying all of
its aspects, but insisting on the fact that no direction information needs to be
consider in our framework. Instead of the identification of north, south, east
and west for example, we rather consider that the only information available
to each cell, or site, of the space is the local graph linking its neighbors. This
information correspond to whether two neighbors are connected or not, and is
presented as a local distance function giving the length of the shortest path link
the two neighbors. Using this approach, we do not restrict ourself to a specific
cellular space but consider all common regular cellular spaces and their coun-
terparts of higher dimensionality.

In Chapter 3, we build what we call the distance field. It is a cellular rule
which, for a given set of moving particles, associates to each site of the space its
distance to the nearest observable particle. It is constructed by composing the
local distance functions together, thus provides a distance information at a more
global level. Not that even if there are many particles, only one distance value
is associated to each site. But distances values can be arbitrary high in general.
We therefore show that when a field is Lipschitz continously, and the absolute of
the values that compose it are not used, it is possible to construct an equivalent
field using a finite and constant number of state. For the case of the distance
field, this condition is fulfilled when the particles move at a bounded speed less
than 1, i.e. when the particles movements are themselve Lipschitz continous.
This is the key building block that allows us to solve all the problems in the
following chapters by a finite-state cellular automata that completely respect
all of the constraints of the cellular automata framework. The end of Chapter 3
presents a basic use of the distance field, namely movements of a boolean field
according to a distance field. The following chapters are build on top of Chap-
ter 2 and 3.

In Chapter 4, we solve a first problem using the building blocks defined
previously. We consider any unidimensional cellular spaces of bounded size on
which a boolean configuration indicate the presence of particle in some site of
the space. From the distributed algorithmics point of view, what we want to
achieve is a load-balancing algorithm for these task-particles. From a physical
point of view, this corresponds to the design of a repulsion mechanism between
the particles. From the geometric point of view, this may be call the density
uniformisation problem. In the chapter, the problem is formally defined and
then decomposed using two distance fields generated by two different kind of
particles. The particles of each kind use the distance field of the particles of the
other kind to run away from them. The final solution is therefore a composition
of the distance field and particle movement building blocks and is expressed



1.3. Points, Distances and Cellular Automata 19

a system of equation. While the system description is simple, the dynamic of
the system itself exhibits physical-like characteristic: we can observe that the
updates act like quantity of movement signals travelling through the space and
causing particles to move. The cellular automata converges as its global energy
decrease, either when the signals leave the spaces on the border, or when they
meet signals of opposite sign.

In Chapter 5, infinite multidimensional cellular spaces are considered with
the problem of the construction of the convex hull of a set of particles. In terms
of distributed algorithmics, the goal is to determine which sites belong to the
privileged area of communication the set of task-particle. More clearly, given a
set of particle we want to detect the sites of the space that belong to the convex
hull of the particle. Because of the difference because Euclidean spaces and
cellular spaces, the result is not the classical Euclidean convex hull. Previous
works have described this difference by identifying a set of allowed angles in the
construction of the convex hull. However the associated solutions are also very
limited: they are only valid for an already connected set of particles, and con-
sider only the 8-neighbor cellular space in most cases. Our approach has been
rather to characterize the diffenrencies between Euclidean and cellular convex
hulls by a simple change of metric, leads to an equivalent but intrinsic formu-
lation of the cellular convex hull. The associated algorithm handle arbitrary
distant set of particle for any cellular space of arbitrary dimesionnality (2D or
3D for example). Again, the solution is entirely expressed in terms of distance
and by a system of equations using one distance field, a rule detecting pattern of
the distance field, and movement from the detected pattern to the particles. In
fact, this solution underlies the construction of a graph, and its precise charac-
terization is required to complete the definition of the system of arbitrary spaces.

Chapter 6 therefore focuses on this proximity graph is terms of geometry,
or energy-minimizing communication graph in terms of distributed algorith-
mic. An analysis shows that this graphs is analoguous to the Gabriel graph,
a subgraph of the Delaunay graph defined on for Euclidean spaces. However,
the exact definition given for the Euclidean spaces does not conserve the good
properties of the structure when applied to cellular spaces. So a mathematical
work is done to generalize Gabriel graphs to arbitrary metric spaces in a way
that conserves its properties. Of course, when applied to Euclidean spaces, this
generalization gives back the original Gabriel graph definition. When applied to
cellular space metric, a derivation is possible down to a system of equation de-
scribing a finite-state cellular automata rule building the metric Gabriel graph
for arbitrary set of particle and arbitrary dimensionnality of the space. Here
again, the system of equations using one distance field, a rule detecting pattern
of the distance field, and movement from the detected pattern to the particles,
but in a more general way.

In Chapter 7, we conclude by giving the list of things that remains to do on
each of these algorihtms, with some sketch on how they can be handled. We
also give a look at other problems that can be expressed in this framework,
problems of geometric or non-geometric formulation. We finally provides with
directions that we think needs to be taken to extend this work and framework.
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This chapter is a presentation of the cellular automata framework, but not
only. The approach chosen is to start from the basics and separate each consid-
eration. In this way, the results are clearer and their generality and modularity
are more easily visible. As the concepts are presented, the useful vocabulary
related to them is also given. Now, let us introduce the most basic concepts
manipulated in our framework: time, space, and finiteness.

2.1 Determinism, and Dynamical Systems

The work presented here mostly consider purely deterministic systems. Deter-
minism is the concept that the same causes lead to the same consequences, and
that the future is entirely determined by the present. In mathematics, such sys-
tems involving time and determinism in this way are called dynamical systems.
Formally:

Definition 2.1.1. A dynamical system is a tuple (T,M,Φ) where T represents
the possible intervals of time, M is the set of all possible system states, and Φ
is the evolution function T × M → M . This evolution function is such that
Φ0(m) = m and Φt1+t2(m) = Φt2(Φt1(m)).
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In this definition, the evolution function Φ tells for each possible initial sys-
tem state m, what is the system state Φt(m) reached by the system after an
interval t of time. The determinism is expressed in the properties of the evolu-
tion function: whatever system state m1 = Φt1(m0) is reached after an interval
t1 of time, the system state Φt1+t2(m0) reached t2 latter only depends on m1,
and is obtained by applying the same evolution function Φ for the same amount
of time t2.

However, the structure of the time itself is not enforced by the definition.
While the time can be circular, or dependent on the initial system state – which
is not taken into account in this definition – most dynamical systems consider
either T = R

+ or T = N. These choices correspond respectively to continuous-
time and discrete-time dynamical systems. Physics usually consider the former
one, and computer science the latter which is simpler. Indeed, any evolution
function Φt : M → M for t ∈ N of a discrete-time dynamical system can be
obtain by a composition of Φ1, i.e. Φt = (Φ1)

t. The function Φ1 is therefore
given the special name of transition function:

Definition 2.1.2. The transition function of a discrete-time dynamical system
(T = N,M,Φ) is the function Φ1 : M → M that associates to every system state
m ∈ M a next system state Φ1(m).

2.2 Space, Time, and Locality

Many dynamical systems describe evolutions that actually occur in a space. In
this case, the system states are decomposed into a spatially extended object,
the space being a projection of how the parts of the system states interact with
each other. Therefore, the notion of space is tightly entangled with the notion
of locality: the space is endowed with a metric representing the time taken by
each pair of parts of a system states to interact with each other.

More concretely, the space is a metric space (S, d), where S is the set of
points, and d : S2 → R the metric or distance function. For a dynamical system
(T,M,Φ) considering this space, a system state m associates to each point x a
state or value m(x) taken from a set V . Therefore we have M = V S . System
states are usually called configurations, the word state being used for the ele-
ments of V , if not otherwise stated.

By locality, the result at any point x of an evolution of t time units can
only take into account values of m in a bounded region B(x, rt), whose radius
is proportional to the evolution time. But only those values need to be consid-
ered, and not the position of x, because we want the same evolution laws to be
applied everywhere.

This implies that the space looks the same from all of its points. In partic-
ular, for any rt, any point x has the same local space Srt, i.e. B(x, rt) ≡ Srt.
Therefore, the evolution function Φ applies the same local evolution functions
ϕt : V

Srt × S → V at every point of the space:

Φt(m)(x) = ϕt(m↾B(x, rt)). (2.1)
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where f↾A denotes the restriction of the function f to A.

As previously, we specially consider t = 1 for discrete-time dynamical sys-
tems, and introduce vocabulary for this case. The factor r is called the neigh-
borhood radius, and B(x, r) is called the neighborhood of x. A local configuration
correspond the values of the configuration in the neighborhood of a point. Fi-
nally the local evolution function for t = 1 is called local transition function:

Definition 2.2.1. The local transition function of a spatial discrete-time dy-
namical system (T = N,M = V S ,Φ) is the function φ : V Sr → V such that
φ = ϕ1, i.e. Φ1(m)(x) = φ(m↾B(x, r)).

2.3 Finiteness, and Cellular Automata

Cellular Automata [45, 13] are discrete-time spatial dynamical systems where
the local transition functions are in fact finite state automata. This finiteness
requirement allows, in particular, exact simulations of the system by computers,
or even to consider it as a spatially extended computer architecture. In term
of spatial dynamical system, this finiteness implies that both inputs set and
outputs set of the the local transition function φ : V Sr → V are finite. There-
fore, the state space V is finite, and so is V Sr , causing the space S to be discrete.

Because of its discreteness and uniformity, the space can be considered as
a vertex-transitive metric graph. The vertex of this graph, usually called cells
or sites, are the points of the space, called cellular space, and the metric is the
usual graph metric. This latter assigns unitary length to edges, the distance
between two sites being the length of the shortest path joining them in the
graph. Let us note that the word neighborhood, defined earlier, can also be used
to designate the neighbors of a site x in the graph, i.e. N(x) = B(x, 1)\{x}.
But the meaning will be clear from the context.

On top of being vertex-transitive graphs, cellular spaces are usually consid-
ered as being lattices. The most commonly used bi-dimensional cellular spaces
are the square grids, with 4 or 8 neighbors by sites, and the hexagonal grids,
having 6 neighbors by site. Moreover, local transition functions commonly have
directional information in addition to the distances. Indeed, the classical frame-
work considers the neighboring sites of any site to be labeled as North or East
for example.

In our framework, we also consider the three classical grids, but as a sam-
ple to obtain general algorithms that should be therefore easier to apply to
other spaces. Also, we consider no directional information and only manipulate
distances, thus restricting ourselves to rotation-invariant cellular automata. De-
pending on the context, an emphasis will be put on the sites or the edges. We
therefore use the different representations shown in Fig. 2.1.
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Figure 2.1: Grids used in this article: the polygons (squares, octagons and
hexagons) correspond to the sites, and the lines to the edges.
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2.4 System [De]Composition and Modularity

The definition of cellular automata, and dynamical systems in general, actually
describe fully deterministic, and therefore, fully determined and closed systems.
This can be tackled directly in many situations, especially in many cellular au-
tomata work where only binary states V = 2 are considered. However, systems
involving complex states are usually more easily expressed as a composition of
many sub-systems.

At the dynamical system level, while the whole system evolution is entirely
determined by the initial system state, this is not the case for the sub-systems
which are in fact open systems, since they continuously interact with each other.
Formally, the evolution function Φ: T ×M → M of a dynamical system can be
viewed, in a curryfied form, as a function Φ: M → (T → M) that associates an
evolution to any initial system state. However, the evolution of an open system
may be determined by something else than its initial system state. One can
even consider “reactive” systems that do not have any internal system state.
Therefore, we will consider that open systems belongs to the class X → (T →
M), for an arbitrary X. These systems, either closed or open, can be considered
as parametrized evolutions.

Definition 2.4.1. An evolution e : T → M associates a system state et ∈ M
to all instant of time t ∈ T .

One thing should be mention at this point. As a system is decomposed into
many sub-systems, its system states M are also decomposed into many sub-
states M1, . . . ,Mn. However, it does not mean that M = M1 × . . .×Mn, since
some combination of sub-state may be impossible to reach. The same thing is
true for systems constructed from many sub-systems, while restricting the pos-
sible initial system state. This remark takes its full importance when properties
like finiteness have to be verified and when counting the number of states of the
system.

For the particular case of spatial dynamical systems, all these considerations
apply with the additional concepts of spaces and locality. In this case, the
evolutions associate to each instant of time a configuration m ∈ V S . In this
case, we call it field.

Definition 2.4.2. A field f : T × S → V associates a state ft(x) ∈ V to all
points x of the space S, at all instant t ∈ T of time.

A spatial dynamical system can therefore be defined as a parametrized field
respecting locality and determinism, the parameter being the initial configu-
ration of course. But since other kind of parameters can be considered, we
introduce the notation F [p1, . . . , pn]t(x) that denotes the value associated at
site x and time t by parametrized field F when the parameters are set of p1, . . .,
and pn. Using this notation, a closed system can, for example, be described as
a composition of system of the form, where pab ∈ {f1, . . . , fk} ∪ {c1, . . . , cn0

}, ci
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is a constant or a parameter of the system:





f1 = F1[p11, . . . , p1n1
]

f2 = F2[p21, . . . , p2n2
]

...
...

...
fk = Fk[pk1, . . . , pknk

]

Instances of such systems can be found in pages 48, 73, and 86. They com-
bine distance fields D[•], given in Eq. (3.8) (page 33), and the moving-particles
boolean field M ′[•], given in Eq. (3.12) (page 42), with other specific fields.

As said for dynamical system, the set of configuration M can be smaller than
the product of sub-system set of configuration M1×. . .×Mk. Thus, the possible
local configuration V Sr can also be smaller than V Sr

1 × . . .×V Sr

k . Consequently,
so can be the set of states V regarding V1×. . .×Vk. These facts are illustrated in
the next chapter on the basic components used by cellular automata considered
in all the other chapters. As it is explained, we can even compose infinite sets
of states and obtain, for example, a set of 10 states.
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Parts of the content of this chapter has been published [34] (mainly Sect 3.3),
and in [33] (early version of Eq (3.8) and the associated comments and figures).

Starting with a cellular space, thought as a metric space, there are two basic
components that naturally comes into considerations: Boolean fields and dis-
tance fields. We will consider both of them in this chapter. Boolean fields will
be treated mostly as dynamic sets of particles. From these particles, a distance
field can be computed, associating to each site of the space an integer value
corresponding to its distance to the nearest particle. This field therefore allows
some other set of particles to move accordingly to the first set of particles, and
so on.

The second important aspect described in this chapter is that, while using
distance fields of arbitrary high values, we identify conditions that ensure that
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the final resulting system can be reduced to a cellular automata, i.e. that the
set of states is finite. This is done by considering the gradient of distance fields
as the useful information.

3.1 Classical Definition and Computation

Let us begin by the basics, and derive all the results from them. Putting aside
locality and dynamicity, the distance field is reduced to the simple concept of
distance map of a set of points.

Definition 3.1.1. Given a set of points P , the distance map DP associates to
each point x of the space its distance d(x, y) to the closest point y of the set P .

DP (x) = d(P, x) = min{ d(x, y) | y ∈ P }. (3.1)

Because this structure computes values that depend on arbitrary distant
data, the locality principle prevents it to be computed instantaneously. However,
the following well-know recursive relation [49, 32, 33] can easily by used to obtain
an evolution that converges to the distance map. The neighborhood radius is
denoted as r.

DP (x) =

{
0 if x ∈ P else:

min{ d(x, y) +DP (y) | y ∈ B(x, r)\{x} }. (3.2)

In fact, this relation is only true for spaces where the distance between two
points also corresponds to the length of shortest paths linking them, namely
length metric spaces, also called path metric spaces. Anyway, we only consider
such spaces. This evolution is obtained by unrolling the recursion on the time
axis, thus recovering the locality and the dynamicity:

D[P ]t+1(x) =

{
0 if x ∈ Pt else:

min{ d(x, y) +D[P ]t(y) | y ∈ B(x, r)\{x} }. (3.3)

But for the moment, we consider the set of points or particles P to be static.
If we assume that all particles appears at time t = 0, and that they are static,
i.e. Pt = P0 for any t > 0, a coherent initial configuration for the distance field
is:

D[P ]0(x) =

{
0 if x ∈ P0

∞ otherwise.
(3.4)

Figure 3.1 shows the evolution of the resulting system with neighborhood
radius r = 1 and a single particle. The sites with infinite value are represented
by empty sites. It can be observed that each site changes its infinite value to the
correct one as soon as it notices the presence of the particle. The locality prin-
ciple expressed in Eq. (2.1) is completely respected, expressed in the particular
case of static particles as:

D[P ]t(x) = DP0∩B(x,r.t)(x)
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00 0

01 1 0 1

02 2 1 0 1 2

03 3 2 1 0 1 2 3

04 4 3 2 1 0 1 2 3 4

05 5 4 3 2 1 0 1 2 3 4 5

06 6 5 4 3 2 1 0 1 2 3 4 5 6

07 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

08 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8

09 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9

10 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10

11 1110 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1011

12 1110 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1011

Figure 3.1: Evolution of Eq. (3.3) and Eq. (3.4)

00 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

01 2 2 2 2 2 2 2 2 2 2 1 0 1 2 2 2 2 2 2 2 2 2 2

02 3 3 3 3 3 3 3 3 3 2 1 0 1 2 3 3 3 3 3 3 3 3 3

03 4 4 4 4 4 4 4 4 3 2 1 0 1 2 3 4 4 4 4 4 4 4 4

04 5 5 5 5 5 5 5 4 3 2 1 0 1 2 3 4 5 5 5 5 5 5 5

05 6 6 6 6 6 6 5 4 3 2 1 0 1 2 3 4 5 6 6 6 6 6 6

06 7 7 7 7 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 7 7 7 7

07 8 8 8 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 8 8 8

08 9 9 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 9 9

09 1010 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1010

10 1110 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1011

11 1110 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1011

Figure 3.2: Evolution of Eq. (3.3) and Eq. (3.5)
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(a) Discrete space (b) Continuous space

Figure 3.3: Evolution of Eq. (3.3) for a single static point

(a) Discrete space (b) Continuous space

Figure 3.4: Evolution of Eq. (3.3) for many static points

Another possibility is to assume that the space was full of particles, and that
they all disappeared at time t = 0, except the set P . In this case, the initial
configuration is:

D[P ]0(x) =

{
0 if x ∈ P0

1 otherwise.
(3.5)

Figure 3.2 shows the resulting evolution for this initial configuration. Here,
each site increments its value like a counter until the correct value is reached.
This is again coherent with the locality principle. This time, each site updates
its value as it notices the absence of particles further and further away. We
prefer to delay the corresponding formal expression to the next section.

With no surprise, everything is so simple in this case that putting side by
side the considered discrete evolution with a continuous one, as done in Fig. 3.3,
only shows that the discrete case corresponds to snapshots of the continuous
case at integral position and time. As shows in Fig. 3.4, considering many
static particles allows, however, to observe some little differences at some local
maxima. Those differences do not appear on the sites though, but on virtual
points between them. Considering these points can be useful, but again, let us
skip this for the moment.
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00 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

01 2 1 2 0 2 1 0 1 2 2 2 2 2 2 2 2 1 0 1 2 2 2 2

02 2 3 3 1 0 1 2 3 3 3 3 3 2 1 0 1 2 3 3 3

03 4 4 0 1 2 3 4 4 3 2 1 2 3 4 4

04 3 3 0 1 2 3 2 3 3 3 4

05 6 1 1 2 3 4 5

06 4 2 2 2 3 4 4 4 5

07 6 3 3 3 4 5 6 6 6 6 6

08 5 5 4 5 4 0 4 5 5 5 5 0

09 6 5 6 0 6 6 6 0

10 6 7 1 2 7 7 2 2

11 8 2 2 3 3 8 3 3

12 3 3 3 3 4 3 3 3 4 4

Figure 3.5: Evolution of Eq. (3.3) on an arbitrary dynamic set
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Figure 3.6: Evolution of Eq. (3.3) on an arbitrary dynamic set
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00 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1

01 2 1 2 1 0 1 0 1 0 1 2 2 1 2 1

02 2 3 2 1 0 1 0 1 0 1 2 2 3 3 3

03 4 3 2 1 1 0 1 1 2 4 4 4

04 4 3 2 3 2 1 0 1 2 3 2 3 0

05 4 3 4 3 2 1 1 2 3 4 4

06 4 5 4 3 2 2 3 5 4 5

07 6 5 4 3 7 3 5 6 5 6

Figure 3.7: Perfect evolution with Eq. (3.7)

1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 2 1 2 1 0 1 0 1 0 1 2 2 1 2 1 2 3 2 1 0 1 0 1 0 1 2 2 3 3 3 4 3 2 1 1 0 1 1 2 4 4 4

4 3 4 3 2 1 1 2 3 4 4 4 5 4 3 2 2 3 5 4 5 6 5 4 3 7 3 5 6 5 6

Figure 3.8: Perfect evolution with Eq. (3.7)

3.2 Definition for Continuous Sets of Particles

Let us now consider the case of dynamic sets of particles, i.e. sets of particles
that change as time goes. As one may expect, using Eq. (3.3) produces many
incoherent values in general, as shown in Fig. 3.5. By incoherent values, we
mean values that do not correspond to any distance, even when taking the lo-
cality into account. For example, we can see that when the left particle at time
4 disappears, the null value is replaced by the value 2 at time 5. This value is
incoherent, since there is no particle at distance 2 at time 3 = 5−2. In fact, this
value should be 6, since we consider that the initial configuration corresponds to
Eq. (3.5), which means that all sites have a particle at time −1. So the nearest
particles which the site does not know about the deletion are at distance 6, at
time −1 = 5− 6.

Indeed, a site x should ideally takes into account the last state it is able to
observe for all the sites. For a site y, this last state observed by site x at time t
correspond to time t′ = t− d(x, y), by direct application of locality. This gives
an equivalent of light cone in physics, that we call information cone. Applying
this to know which set of points P ∗

t (x) is observed by site x at time t, we have:

P ∗
t (x) =

⋃

t′≤t

{ y ∈ Pt | d(x, y) = t− t′ }. (3.6)

A perfect evolution should then associates to each site x at time t, the value
the site would have in the distance map corresponding to the observed set P ∗

t (x).
Formally:

D[P ]t(x) = DP∗

t (x)(x) = min{ d(x, y) | y ∈ P ∗
t (x) }. (3.7)
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To fix ideas, a perfect evolution is shown in Fig 3.7 with dynamic set show-
ing explicitly the differences. Indeed, we see in this evolution that sites values
may jump from low to high values in some cases of many-particles deletion as
described before. This is the case for each particle deletion occurring at time 5.

However, implementing this perfect evolution function requires an infinite
number of states in general. In the one-dimensional case, it would then be pos-
sible to memorize two values, one corresponding to the left nearest particle, and
the other to the right one, but this can not be used for higher dimensional spaces.

Since it is not possible to have a perfectly coherent distance field for arbi-
trary dynamic sets, we need to identify which are the dynamic sets allowing a
coherent distance field to be computed. We will see that with a minor modi-
fication, we can perfectly handle the dynamic sets that respect, in some sense,
the locality of the space: continuous dynamic sets.

Indeed, we have seen that particles deletions causes coherence problem.
Therefore, we consider dynamic sets such that, if a particle is at site x at time t,
then at time t+1, there must be a particle in B(x, 1). Also, to prevent the space
to be empty of any particle, and thus prevent infinite values, we also require a
particle to be in B(x, 1) at time t− 1. By transitivity, this requirement can be
expressed as:

Definition 3.2.1. A dynamic set P of particle is continuous if and only if it
is not empty and for any particle x ∈ Pt, we have at any time t′, at least one
particle y such that d(x, y) ≤ |t− t′|.

This requirement basically means that the dynamic set corresponds to a set
of moving particles, where the particles can split or merge, but never appear nor
disappear. They also have to move at speed 0 or 1, being thus bound by their
information cone. In this way, all the distances should evolve in a smooth and
tractable way. Let us look at the evolution of Eq. (3.3) on a simple continuous
set.

Fig 3.9(a) and 3.9(b) show such an evolution, for Eq. (3.3) and for the ideal
continuous case respectively. As initial conditions, two distinct particles are
considered as being static before t = 0 so that the distance field has locally
converged. Then, from time t = 0 to t = 1, the right particle moves one step to
the right. At time t = 1 and t = 2, we can see that Eq. (3.3) produces a spurious
local maximum not present in the continuous space-time evolution. The rea-
son is that for the discrete version, the particle simply disappears and reappears.

We therefore modify the rule to take into account the continuity of the
dynamic set. Indeed, if a particle is not visible anymore, then it has moved,
with speed 1, to at least one of the neighboring sites. Thus, we can conclude
that this case always corresponds to a distance value of 0.5 as it is the case for
the continuous case. This gives the following rule:

D[P ]t+1(x) =





0 if x ∈ Pt+1 else:

0.5 if x ∈ Pt else:

min{1 +D[P ]t(y) | y ∈ B(x, 1)\{x}}.
(3.8)



34 3. Distance Fields and Gradients

(a) Discrete space: Eq. (3.3) (b) Continuous space (c) Discrete space: Eq. (3.8)

Figure 3.9: Evolution of distance fields with many moving points

With this correction, we obtain the evolution shown in Fig 3.9(c), which
only differs with the continuous ideal evolution in the local maxima as previ-
ously. Let us consider a more complex continuous dynamic set, as in Fig 3.10(a).
In fact, this dynamic set can be straightforwardly interpolated into continuous
space-time trajectories (Fig 3.10(b)). We can therefore check that the values are
coherent. Also evolution of Eq. (3.8) corresponds exactly to snapshots of the
corresponding continuous space-time evolution at integral position and time.
Actually, this equation applied on continuous dynamic sets verifies the locality
as expressed in Eq. (3.7).

The last thing to note can be shown on Fig 3.11, corresponding to the same
evolution as Fig 3.10(a). We can see that the distance field is more organized
compared to the previous evolutions. In fact, between every two particles, the
distance fields first strictly increase to a local maximum and then strictly de-
crease to the next particle. Thus, any site can use the difference between its
distance value and the values of its neighboring site to determine the direction
to the nearest observed particle(s).

3.3 Finiteness, Gradients, and Continuity

While the distance field rule (3.8) takes locality into account, it does not address
finiteness, which prevent it to be directly usable in a pure cellular automaton.
In fact, it is not possible to address it in general, since the space is infinite and
so arbitrary dynamic set will produce arbitrary high distance values. Thus, we
need to restrict the class of considered dynamic sets and/or to represent only
a finite part of distance field information in order to have a finite number of
possible states.

An easy case is for example to only consider finite cellular space having a
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(a) Evolution of Eq. (3.8) (b) Interpolated dynamic set

Figure 3.10: The values of (a) corresponds to the interpolated dynamic set
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Figure 3.11: Evolution of Eq. (3.8)
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known diameter, or dynamic sets that fill the infinite space sufficiently enough
to bound the distances. In this case, only a finite number of distances are actu-
ally generated by the distance field, that can therefore be entirely represented
with a finite number of states.

We tackle here the more interesting case where no bound on the distance
field values is assumed, but where the gradient of the distance field is the only
part of the information that is used by the cellular automaton.

3.3.1 Distance field gradient

Indeed, in cases where we only need to get some directional information from
the distance field, only the difference between neighboring sites values is re-
quired, not the actual absolute values of the sites. We call the collection of
these differences gradient of the distance field. Formally, we denote the gradient
by ∆D[P ] : T × S2 → R and define it for discrete spaces as:

∆D[P ]t(x, y) = D[P ]t(x)−Dt[P ](y) for d(x, y) ≤ 1 (3.9)

The set of differences can be finite even when the set of absolute values is not.
Then, the goal is to identify classes of dynamics sets having a finite gradient,
and a distance field finite representation that conserves this gradient. The most
important property is that the difference between two neighboring sites must
be bounded by some fixed constant K at any time.

∀(t, x, y) ∈ T × S2; |∆D[P ]t(x, y)| ≤ K for d(x, y) ≤ 1. (3.10)

When considering the effects of this condition on arbitrary distant sites x
and y, we obtain the condition |∆D[P ]t(x, y)| ≤ K.d(x, y). This corresponds to
the so-called K-Lipschitz continuity in mathematics. In the next sub-section, we
show that it is possible to have bounded gradient and identify a corresponding
class of dynamics sets.

Definition 3.3.1. A function f from a metric space (A, dA) to another (B, dB)
is K-Lipschitz continuous if and only if dB(f(x), f(y)) ≤ K.dA(x, y).

3.3.2 Dynamic sets of bounded gradient

First things to note is that any fixpoint distance field has bounded gradient,
with K = 1. However, bigger differences actually appear because of particles
movements. Indeed, Eq. (3.8) assigns a null distance whenever a particle is
present. This assignment is the crucial part since nothing prevent a dynamic
set to assign a null distance beside any arbitrary high distance value. This fact
is obvious for arbitrary dynamic set, but is also true for continuous ones when
a particle move in the same direction for many times (see Fig 3.12).

A way to prove it formally is to prove that the min part of the equation
does not create differences larger than the differences already present in the
neighborhood of a considered site, as done below:



3.3. Finiteness, Gradients, and Continuity 37

0 1 1 1 1 1 1 1 1

0 1 2 2 2 2 2 2 2

0 1 2 3 3 3 3 3 3

0 1 2 3 4 4 4 4 4

0
.5
0 2 3 5 5 5 5

1 0
.5
0 3 6 6 6

1
.5
1 0

.5
0 6 7 7

2 1
.5
1 0

.5
0 5 6

2
.5
2 1

.5
1 0 1 6 8

3 2
.5
2 1 0 1 2 7 8

3
.5
3 2 1 0 1 2 3 8

4 3 2 1 0 1 2 3 4

4 3 2 1 0 1 2 3 4

(a)

0 1 1 1 1 1 1 1 1 0 1 2 2 2 2 2 2 2 0 1 2 3 3 3 3 3 3

0 1 2 3 4 4 4 4 4 0
.5
0 2 3 4 5 5 5 5 1 0

.5
0 3 4 5

1
.5
1

.5
4 5 6 2 1

.5
1 0

.5
0 5 6 7 2

.5
2

.5
0 6 7 8

3 2
.5
2 1 0 1 2 7 8 3

.5
3 2 1 0 1 2 3 8 4 3 2 1 0 1 2 3 4

(b)

Figure 3.12: Evolution of Eq. (3.8) with many moves in the same direction

Proposition 3.3.2. The µ operator that associates to a map f another map
µ(f) such that µ(f)(x) = min{f(y) | y ∈ B(x, r)\{x}} preserves K-Lipschitz
continuity.

Proof. Let f be a K-Lipschitz continuous map, x and y two points such that,
and y ∈ B(x, r). We can consider d(x, y) = r without loss of generality. By
definition of K-Lipschitz continuity, there is

|f(x)− f(y)| ≤ K.d(x, y) = K.r.

Since µ(f)(x) takes the minimum value in {f(z) | z ∈ B(x, r)\{x}}, then it is
majored by f(y) and minored by the minimal possible values of the z’s, namely
f(x)−K.r. The same holds for µ(f)(y):

f(x)−K.r ≤ µ(f)(x) ≤ f(y),

f(y)−K.r ≤ µ(f)(y) ≤ f(x).

By considering the µ(f)(x) inequality ±K.r, we obtain:

f(x)− 2K.r ≤ µ(f)(x)−K.r ≤ f(y)−K.r,

f(x) ≤ µ(f)(x) +K.r ≤ f(y) +K.r,

Combining these two last inequality with the µ(f)(y) one, we obtain:

µ(f)(x)−K.r ≤ µ(f)(y) ≤ µ(f)(x) +K.r,

By transitivity across the space, this result extends to any pair of points:

|µ(f)(x)− µ(f)(y)| ≤ K.d(x, y) ∀{x, y} ⊂ S.
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Now it is established that the null distance assignment is the only source of
possible K-discontinuity. The requirement is therefore that a site x can receive
a particle only if any neighboring site y has a low distance value D[P ](y) ≤ K.
Looking at Fig. 3.12, we can see that the bigger difference appears because the
middle site with value 4 does not receive any information before being actually
set of zero.

A simple solution is to increase the distance field neighborhood radius to 2.
In this case, the distance values are always updated fast enough. But let us skip
this one and only consider the case where the neighborhood is one for every
fields.

With a single particle, it is then clear that there is a problem if the particle
moves at the speed of the information. The solution is, therefore, as simple
as bounding the speed of the particle. But since the particles trajectory is
a composition of null speed move and speed 1 move, we can only bound the
number of consecutive moves in the same direction (Fig. 3.3.2). We summarize
this in the following formal statements:

Definition 3.3.3. In continuous space, a dynamic set of particles P is K-
continuous if for any x ∈ Pt, there exists, for any t′, some y ∈ Pt′ such that
d(x, y) ≤ K.|t− t′|.
Definition 3.3.4. In discrete space, a dynamic set of particles P is K-continuous
if for any x ∈ Pt, there exists, for any t′, some y ∈ Pt′ such that d(x, y) ≤
⌈K.|t− t′|⌉.
Proposition 3.3.5. If a dynamic set of particle P is K−1

K
-continuous, then its

distance field D[P ] is K-Lipschitz continuous.

With many particles, the proximity of particles may bound the distance
values, allowing some particles to move a higher number of consecutive time
without causing any K-discontinuity. We come back to this in Sect. 3.5, but for
the moment, the point is made: having a bounded gradient is possible without
reducing the class of considered dynamic set of particles to useless cases. So let
us now find a way to use the gradient finiteness to obtain a finite field.

3.4 Continuous Fields Representation

In this section, we show that if the gradient is bounded (Eq. (3.10)), then the
modulo of the distances are enough to compute this gradient. For readability,
let us denote by f̂ the modulo of function f . So the modulo operator projects
the initial field D[P ] : T × S → N into a field D̂[P ] : T × S → Z/nZ:

D̂[P ]t(x) = D[P ]t(x) mod n for all x ∈ S

with n = 2K + 1, while conserving the gradient information ∆D[P ]. More
generally, this is true for any K-continuous function f : S → N and its associated
gradient ∆f . Let us examine what are the effects of the modulo transformation,
and describe how to retrieve the gradient ∆f back from the transformed function
f̂ .
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Figure 3.13: Evolution of Eq. (3.8) with bounded number of consecutive moves
in the same direction

Figure 3.14: Effects of the modulo operator on the order

3.4.1 Preservation of gradient by the modulo

Let x be any point of the space. We know that for any y ∈ B(x, 1), f(y) ∈
[f(x) − K, f(x) + K]. Since the value n = 2K + 1 used to apply the modulo
is actually the size of the set {f(x) − K, . . . , f(x) + K}, the modulo operator
acts as a bijection from [f(x) −K, f(x) +K] to [0, 2K + 1]. This ensures that
all information f ↾ B(x, 1) contained in the neighborhood of x is conserved,
including the local gradient.

If we denote this local bijection as modu : [u −K,u +K] → [0, n], we need
to find its inverse function mod−1

u . Figure 3.14 shows that the transformation
modf(x) cuts the interval [u−K,u+K] into two parts at some multiple of n and
switches their relative position while conserving the order inside each interval.
Indeed, the modulo maps all multiples (a − 1).n, a.n, (a + 1).n to zero, thus
translating the intervals [(a−1).n, a.n[, [a.n, (a+1).n[, and [(a+1).n, (a+2).n[
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with different amounts −(a− 1).n, −a.n, −(a+ 1).n respectively.

modu(v) = −a.n+





v − n if v > a.n+ 2K,

v + n if v < a.n,

v otherwise.

Because we only want to recover the gradient, and not the absolute value,
we can safely ignore the −a.n translation. Thus, we define the operator domu

that translates any value v̂ to another value having the same modulo, but being
in the required bound, i.e. domû(v̂) ≡ v (mod n) and domu(v̂) ∈ [û−K, û+K].
Since û, v̂ ∈ [0, n] then:

domu(v̂) =





v̂ − n if v̂ > û+K,

v̂ + n if v̂ < û−K,

v̂ otherwise.

It is clear that domu(modu(v)) = û− u = −a.n and mod−1
u = domu + a.n.

Therefore, any information computed from f ↾ B(x, 1), which is taken from

an infinite set, gives the same results when computed on dom
f̂(x) ◦ f̂ ↾ B(x, 1),

which belongs to a finite set if the computation does not depend on the absolute
values. For the local gradient in particular, we have:

∆f(x, y) = dom
f̂(x)(f̂(y))− dom

f̂(x)(f̂(x))

= dom
f̂(x)(f̂(y))− f̂(x)

3.4.2 Determinism of the modulo field

The preservation of the gradient by the modulo for any K-Lipschitz field has no
implications on the number of states in the general case. Indeed, the modulo is
applied on each configuration, but the transition from a configuration to next
one is defined on the original field. The question is thus to determine whether
the next modulo configuration can be computed from the previous modulo con-
figuration or not, i.e. whether the modulo field is locally deterministic or not.

To have a locally deterministic modulo field, we need the modulo of the next
configuration not to depend on the absolute values of the previous configuration.
Let us check this for Eq. (3.8). In fact, it is pretty easy to see that this is the
case. Indeed, the first two cases of this equation gives 0 and 0.5, whose modulo
are themselves and only depend on P . In the last case, the modulo of the min
only depends on the modulo of the minimal value of the considered set, and the
identification of that minimal value only depends on the order of the element in
the set. So the modulo of the transition does not depend on any absolute value.

Armed with this result, we can transform Eq. (3.8) in the following equation

D̂[P ]t+1(x) =





0 if x ∈ Pt+1 else:

0.5 if x ∈ Pt else:

1+̂min{dom
D̂[P ]t(x)

(D̂[P ]t(y)) | y ∈ B(x, 1)\{x} }.
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which corresponds to the local transition function of the modulo distance field.
However, one should not forget that the bound on the gradient depends on set
of particles P . In the next section, we consider the design of moving particles
respecting the different conditions seen until now. When such sets of moving
particles are combined with Eq. (3.8), the result is therefore always a finite state
system, as it will be the case in all the following chapters.

For the number of states needed for the modulo distance field, one should
take into account that if a particle moves, then there will be some 0.5 val-
ues in the evolution. Since the interval [−K,+K] contains the possible values
{−K,−K + 0.5, . . . ,K − 0.5,K}, which gives {2K,−2K + 1, . . . , 2K − 1, 2K}
when multiplying by 2, we thus have that the number of states is 4K + 1. But
if no 0.5 values are needed, the number of states is 2K + 1.

3.5 Particles Movement According to a Field

Until now, we have studied the computation of distance fields of some external
set of moving particles. In this section, we consider particles whose movements
are typically determined by an external field. We tackle this by considering that
the particle go through all edges “open for traffic” by some external parameter,
this parameter being typically a field. This allows us to improve the modularity,
so that considering a different movement does not imply to study all the details
again.

We also consider the case where a distance field is computed from the par-
ticles. In this case, we show how to ensure the K-Lipschitz continuity of the
distance field in order to obtain a finite number of states.

The last thing to note is that the movements described here are simply those
that arose naturally in the different study made for this document. No claim of
full generality is made.

3.5.1 Movements through open edges

In order to factorize some consideration, we consider that the particles do not
move directly according to a field, but according to a function that tells for each
oriented edge, if the particle goes through the edge or not. Let us denote this
function as O : S2 × T → 2, and read Ot(x, y) as “the oriented edges (x, y) is
open at time t”. Figure 3.15 shows the openness possibilities for an edge {x, y},
and their respective graphical representations.

O(x, y) O(x, y) ¬O(x, y) ¬O(x, y)
O(y, x) ¬O(y, x) O(y, x) ¬O(y, x)

x y x y x y x y

Figure 3.15: Representation of edges openness
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(a) Moving with rule M (b) Moving with rule M’

Figure 3.16: Movement through doubly open edges

For our study, we only consider particles that move whenever they can, but
never disappear. Let us express this in terms of site gaining, loosing or keeping
its particle. In order to prevent a particle to disappear, if a site has a particle,
but no edge open toward any neighboring sites, it simply keeps its particle. We
formalize this into the following predicate:

K[m,O]t(x) = mt(x) ∧ ¬∃y ∈ N(x), Ot(x, y)

In all other cases, the site looses its particle, being sure that a neighboring site
will gain the particle. So from the point of view of this neighboring site, it gains
a particle because there is an edge open toward it, and a particle at the other
extremity of this edge

R[m,O]t(x) = ∃y ∈ N(x),mt(y) ∧ Ot(y, x)

Composing these two predicates, and a Boolean field in : S × T → 2 indicating
particles insertion, we obtain the following local transition function M [in,O]:

mt+1(x) = M [in,O]t+1(x) = int+1(x) ∨ R[m,O]t(x) ∨ K[m,O]t(x) (3.11)

This rule has the correct behavior whenever no edges is doubly open, for strictly
increasing movement for example. In the case of doubly open edges, a blinking
is generated, which is not what we want in our case (Fig. 3.16(a)). We prevent
this blinking by requiring site having a doubly open edge to keep their particles:

K ′[m,O]t(x) = mt(x) ∧ ∃y ∈ N(x), Ot(x, y) ∧ Ot(y, x)

Adding this to the local transition function M [in,O], we obtain M ′[in,O]:

mt+1(x) = M ′[in,O]t+1(x) = M [in,O]t+1(x) ∨ K ′[m,O]t(x) (3.12)

3.5.2 Movements according fields

As the movement evolution has been described, let us examine its behavior when
used to obtain a movement according to an integer field. Let us consider only
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the unidimensional cellular spaces for the moment. In this case, one usually
considers the movements towards the local maxima or minima of the field. So
we consider the following edge openness function:

Dir[f,<]t(x, y) = ft(x) < ft(y)
Dir[f,≤]t(x, y) = ft(x) ≤ ft(y)
Dir[f,≥]t(x, y) = ft(x) ≥ ft(y)
Dir[f,>]t(x, y) = ft(x) > ft(y)

(3.13)

3.5.3 Movements of bounded distance field gradient

In the cases where the distance field of the moving particles is computed, one
will typically want this distance field to be K-Lipschitz continuous in order to
have a finitely representable gradient. As explained in Sect. 3.3.2, it is thus
required that any site gaining a particle has sufficiently low distance value. To
respect the gradient bound K, we therefore need the site value to be less than
K − 1. This way, if it is set to zero in the next configuration, we will be sure
that its neighboring sites have values less or equal to K. So we consider the
following edge openness function:

B[dp]t(x, y) = dpt(y)− dpt(x) ≤ K − 1. (3.14)

As first example, let us consider a single particle, with an increasing move-
ment on an strictly increasing field. If we want to compute a finite state distance
field for this particle, we thus need to consider the following system:

{
dp = D[p]
p = M ′[p0, B[dp] ∧ Dir[f,≤]]

Figure 3.17 shows the evolution obtained with different bound. One can see that
the particle trajectory is K−1

K
-continuous as described in Sect. 3.3.2. However,

it is possible to respect the bound without being K−1
K

-continuous. This is the
case in the evolution shown in Fig 3.18. The reason for that is the proximity
of another particle that, in fact, bounds the distance values. Indeed, between
two particles at distance 2K − 1, all the sites have a distance value lesser than
K. So, if one of the particle moves in the direction of the other particle, it can
safely run at speed one as many times as it wants.
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Early version of this chapter has been published in [33].

In the previous chapter, we have introduced two basic components: distance
fields and Boolean fields representing sets of moving particles. We now consider
a problem involving movements of the particles relatively to each other. The
problem tackled here is, in fact, a unidimensional version of the repulsion and
uniformization problem presented in the introduction chapter. It allows to see
how components can be combined to form a coherent dynamic system.

4.1 Problem Statement

4.1.1 Informal Statement

As a general definition, a density uniformization algorithm distributes a given
set of points in a given space so that the local density of points is equal every-
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where in the space. In our particular case, we consider particles are placed in
an unidimensional cellular space, and we want them to move toward a uniform
density configuration. Each site hosts at most one particle, in order to work
a the finer possible level. Finally, we want the cellular automata rule to be
self-stabilizing. That is to say that if no input parameter changes then the rule
converges, but if the size of the space or the number of particles change in a
smooth way, then the rule adapts its trajectory in a smooth way.

A precise definition of uniform density with discrete particle is hard to give
in general, but the unidimensional case is easier to deal with. Indeed, uniform
density placements simply correspond to regular placements where the distance
between consecutive particles is the same everywhere. Let us consider an ide-
alized continuous space [0, n], and derive precise definition of uniform density
placement.

4.1.2 Particle placement and density

The density of particles in a bounded unidimensional space is the number of
particle divided by the length of space. Local density at a point x of the space is
normally defined as the limit of the density as a considered segment [x−h;x+h]
of the space is shrunk to be just the point itself, i.e. h → 0. In our case,
considering the limit does not make sense, since we have a finite number of
particles. So it is necessary to indicate at which scale h the local density is
calculated.

Definition 4.1.1. The density of particles in a segment [a, b] is the number of
particles placed on the segment divided by the length b− a of the segment.

Definition 4.1.2. The local density at point x for scale l is the density of
particles in the segment [x− l

2 , x+ l
2 ].

Definition 4.1.3. A placement has uniform density at scale l if the local density
for this scale is the same almost everywhere where it is defined.

For p particles placed in a space [0, n], the density is obviously uniform at
the scale l = n, since the local density is only defined at point n

2 with value p
n
.

An intuitive idea can thus be to require uniform density at the smallest possible
scale. Since p particles split any space [0, n] into p + 1 particle-free parts, the
scale of any placement ρ is lower bounded by the length of the biggest particle-
free parts. This is because those parts have null density, while other parts
necessarily have non-null density. The only way to minimize the length of those
particle-free parts is to equalize their size, thus cutting the space [0, n] into p+1
parts of equal length n

p+1 :

Proposition 4.1.4. For a set of particle {1, . . . , p} in a space [0, n], the smallest
possible uniform scale is n

p+1 , with placement ρi =
n

p+1 i and density p+1
n

.

However the local density of this placement is higher than the expected
density p

n
. If we want to have the same density at all uniform scale, a possible

placement is ρi =
n
p
(i − 1

2 ) for i ∈ {1, . . . , p}. This placement is uniform up to

the scale p
n

and corresponds to cutting the space into p parts of equal size, and
to place a particle at the center of each part.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Bounded and unbounded space version of the placements

Proposition 4.1.5. For a set of particle {1, . . . , p} in a space [0, n], the smallest
possible scale with density p

n
is n

p
with placement ρi =

n
p
(i− 1

2 ).

In fact, those two solutions are as they are because we consider a bounded
space, introducing particularities at the boundaries. Let us clarify the rela-
tions between those two solutions and the boundaries by extending them to
unbounded spaces using either mirror or cyclic boundaries conditions. In this
setting (Fig. 4.1), it is possible to see that the placement of Prop. 4.1.4 needs to
be completed with boundary particles in order to correspond to an uniform den-
sity placement. This explains the higher density. So if we have particles 0 and
p + 1 on the boundaries, then we need the placement of Prop. 4.1.4, otherwise
the placement of Prop. 4.1.5 has to be considered.

4.2 Solution Description

4.2.1 Walls and Symmetries

From the previous remarks about uniform placements, it is now possible to de-
rive a global scheme to move each particle to its final position. We introduce
a new kind of particle-like objects that we call walls. They serve as boundary
between the regions of each particle as proposed in the placement of Prop. 4.1.5.

Figure 4.2 shows how walls are placed in uniform density configurations.
With them in the space, many symmetries appear. The boundaries of the
bounded space is either occupied by particles or by walls, depending on the
considered placement. Also, in both situations, walls are exactly at the middle
between their neighboring particles, and particles are exactly at the middle be-
tween their neighboring walls.

Because of these symmetries, it is clear that the main problem is to be able
to move a set of objects to the middles of another set of objects. However, we
will need to check the effects of applying these movement laws symmetrically
between the particles and the walls, and the effects of the discreteness of the
space.
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(a) Placement of Prop. 4.1.4: particles on boundaries

(b) Placement of Prop. 4.1.5: walls on boundaries

Figure 4.2: Walls in both uniform density placements

4.2.2 Movement toward the middles

Let us consider the movement of the walls toward the middles between the
particles. Since, the middles are the furthest points from the particles, we
use a distance field, and ask for the walls to use the gradient of the particles
distance field, and to move to local maxima. The distance field D[p] is computed
using Eq. (3.8), and the movement is achieved following the results described in
Sect. 3.5. We thus obtain the following system:





dp = D[p]
dw = D[w]

p = M ′[p0, B[dp] ∧ Dir[dw,≤]]
w = M ′[w0, B[dw] ∧ Dir[dp,≤]]

(4.1)

The last equation, for example, ask for the walls to move from an initial position
w0, according to the distance field dp of the particle, while taking care of keeping
its own distance field dw continuous. The converse is asked to the particles, as
dictated by their symmetry. Because we use M ′ and the non-strict relation
≤, we manage the cases where the maxima should be between two sites by
occupying both sites (see Figs. 3.4 and 3.16). The last thing to precise is the
initial configuration. While p0 is given freely according to an initial set of
particles P , the walls are simply w0 = ¬p0. This way, we ensure that there is a
wall between every two consecutive particles, and vice-versa. For the distance
fields, we initialize it using one and zeros as in Eq. (3.5).

{
p0(x) = x ∈ P
w0(x) = x 6∈ P

The symmetries between particles and walls allow to deal with both con-
sidered placements in with only one cellular automata. The difference will be
naturally implied by the boundaries initial states, without special consideration.
Figure 4.3 shows the evolution of the system on a space of length 17, with two
particles placed at position 1 and 3 (the first site number is zero). The left col-
umn corresponds to the particles and their distance field, and the right column
to the walls and their distance field.

4.3 System Evolution and Energy

First of all, Figure 4.3 shows that the system indeed evolves to a fixpoint where
the particles and the walls are placed regularly in space. The evolution be-
gins with the distance field of the particles updating its values according to the
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Figure 4.3: Evolution of the system Eq. (4.1)
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absence of particle in the right of the space. As the particle distance field is
updated, the rightmost wall shrinks of one site per transition. Also, as the wall
shrinks, the wall distance field update its values, and to make the long story
short, the walls distance field updates affect the particles, that in turn affect
their distance field and so on. In fact, the evolution reflects the circular relation
between the distance fields, the walls and the particles. This behavior is easily
identifiable from time 27 where only a few updates travel in the space, acting
as signals.

In Fig. 4.4, the same evolution is drawn, the walls, the particles, and their
distance fields configurations being superposed into one figure per time. In the
last seven lines of the figures, it is possible to see the signals traveling in the
shape of the distance fields.

In order to study the dynamics of the cellular automaton, we identify these
signals traveling between particles and walls and causing their displacements in
the cellular space. From the interaction between the particles, the walls and the
signals, we abstract the behavior of our two-layered cellular automaton into a
consistent space-time diagram showing how the cellular automaton evolves as a
whole.

4.3.1 Circular relation and perturbation propagation

As said before, the updates of values propagate from the distance field of the
particle to the walls, then from the walls to their distance field, then from the
walls distance field to the particles, which in turn propagate to their distance
field and so on. This can be viewed as a propagation of perturbation from the
equilibrium state of each component of the system, the state of each component
being an input for another component in a circular way:

Indeed, the Boolean fields have their Boolean states evolving depending on
the direction indicated by their input distance field gradients. Conversely, the
distance fields have their distance values evolving depending on the particles
position indicated by their input Boolean field.

In order to identify precisely the nature of the signals, we study the equilib-
rium states of both fields, and the way each of them return to an equilibrium
state after a single modification of their input. This will lead us to the definition
of a precise energy function for each component, composed into a global energy.
This energy is expressed in terms of number of changes of the Boolean field.

4.3.2 Equilibrium of the Boolean fields

As already observed in the previous chapter, and as it can be observed on
the evolution shown in Fig 4.3, the distance field between any two particles is
always first strictly increasing, and then strictly decreasing. When studying
the Boolean field of the walls for example, we can thus focus on any slice of
the space delimited by null distance value on the distance field of the particle.
Supposing that the distance field does not change, Figure 4.6 shows the two
possible equilibrium configuration for the Boolean field, depending on the parity
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Figure 4.4: Evolution of the system Eq. (4.1)
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3 2 1 2 3 0 1 2 3 2 1 0

Figure 4.5: Relations between the Boolean and the distance fields

of the size of the slice.

Figure 4.6: Equilibrium states of the Boolean fields

Figure 4.7: From arbitrary to equilibrium Boolean evolution

Let us now consider a non-equilibrium state and its evolution back to equi-
librium as shown in Fig 4.7. We can see that among all the open edges, only
three of them actually have an effect. Each of the two right oriented edges have
two effects: one site loosing a particle and another gaining a particle. The dou-
bly oriented edge has a single effect.

To summarize this in terms of energy initially present at each edge and caus-
ing the evolution, we can say that any right oriented edge having a particle on
its left has an energy of 2, since it will eventually leads to two Boolean state
modifications. The same thing hold for doubly oriented edges that have energy
1 as long as one of their site has no particle.

From this statement, it may seem that the energy of an edge depends on
arbitrary distant site states. However, it is not the case since the required in-
formation can be deduced using both gradients values on the edge. Indeed, the
direction to a particle is indicated by its associated distance field. So everything
can be expressed in terms of sign of gradients of the particles and the walls layer.

Figure 4.8 show the same evolution as Fig. 4.7 with the distance fields as-
sociated to each layer. It it possible to see that the edges having an energy
correspond to those whose gradients are not of opposite signs. When they are
both positive, the energy has to be 2. When one is null but the other is pos-
itive, the energy is 1, and two null gradients have no energy. We obtain the
following formula. In fact, this equation takes into account the direction of the
movements, since it gives -2 for two negative gradients. Thus, it corresponds to
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Figure 4.8: From arbitrary to equilibrium Boolean evolution

a momentum, whose absolute value is the energy of the edge.

Q
pw
t (x, x+ 1) = sgn(∆dpt(x, x+ 1)) + sgn(∆dwt(x, x+ 1)). (4.2)

sgn(x) =





−1 if x < 0

0 if x = 0

1 if x > 0

One thing has to be noted here. Eq. (4.2) is totally symmetric on the distance
fields, so there is no need to consider it twice. It corresponds directly to the
sum of the momentum of both particle and wall Boolean fields.

4.3.3 Equilibrium of the distance fields

Let us now consider the effects of a modification of the Boolean fields on the
equilibrium of the distance fields, and analyze how the the momentum is trans-
formed. In fact, Figure 4.8 already shows an evolution starting with an equilib-
rium distance field which is modified as the particle moves. The equilibrium of
the distance field is characterized by local difference of 1 or -1 or zero, with the
0 of the distance field corresponding to the particles. Let us see what happen
when a particle moves.
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(c) semi-move: removal

Figure 4.9: Effect of movements on the distance field

Looking at the configurations at the modification time, it is possible to see
that extending a particle to the right leads to a difference of 2 on the correspond-
ing edge. For a shrinking of one particle on the left, we obtain two differences
of −0.5. By conservation of the momentum, they both correspond to a momen-
tum of 1. This can, indeed, be retrieved by comparing these differences with
the equilibrium differences 1 and −1:
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Q
dp
t (x, x+ 1) = ∆dpt(x, x+ 1)− sgn(∆dpt(x, x+ 1)). (4.3)

When a particle moves many times in the same direction, the signals are
added on top of each other, since the gradient becomes bigger and bigger. Then,
looking at the evolution after the modification, it can be observed that theses
differences are just translated to obtain the next configuration. Indeed, apply-
ing the min operator locally on a monotonic function just translates it in the
increasing direction. In the distance field local transition function (Eq. (3.8))
applies min but also add 1 to the distance values. Therefore translation vec-
tors are respectively (1, 1) for increasing parts, and (−1, 1) for decreasing parts.
Figure 3.12 illustrates this fact.

Just to make things clear, let us also consider the transfer of the energy
from the distance fields to Boolean fields. We know that as the distance values
are updated, the local maxima are displaced. This maxima is at the middle
between two particles. If a particle moves of 6 sites, the maxima is shifted of 3
units. In fact, the momentum is conserved since moving of 3 units amounts to
remove 3 times and add 3 times. With a odd number, the numbers of removals
and additions differ of one.

4.3.4 Global Equilibrium and Energy

Now that we have defined the momentum for all fields, we can consider the
equilibrium of the whole system. First, let us consider the combination of all
fields at a given edge. We obtain the following:

Qt(x, x+ 1) = Q
pw
t (x, x+ 1) +Q

dp
t (x, x+ 1) +Qdw

t (x, x+ 1)

= sgn(∆dpt(x, x+ 1)) + sgn(∆dwt(x, x+ 1))

+∆dpt(x, x+ 1)− sgn(∆dpt(x, x+ 1))

+∆dwt(x, x+ 1)− sgn(∆dwt(x, x+ 1))

= ∆dpt(x, x+ 1) + ∆dwt(x, x+ 1)

Because it is a sum of differences, this equation keeps the same form when
summed over any sub-part [y, z] of the space, or even the whole space:

Qt(y, z) =
∑

x∈[y,z]

Qt(x, x+ 1)

=
∑

x∈[y,z]

∆dpt(x, x+ 1) + ∆dwt(x, x+ 1)

=
∑

x∈[y,z]

∆dpt(x, x+ 1) +
∑

x∈[y,z]

∆dwt(x, x+ 1)

= ∆dpt(y, z) + ∆dwt(y, z)

These equations describe precisely the global aspect of the final configuration
shown in the evolution Fig. 4.4. Indeed, if the momentum is null at every edges,
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Figure 4.10: Space-time diagram of the uniformization

then each distance field is the opposite of the other one, with some constant:

Qt(y, z) = 0

∆dpt(y, z) + ∆dwt(y, z) = 0

∆dpt(y, z) = −∆dwt(y, z)

But this equation does not fully describe the equilibrium state, since it is
required for each field to be stable individually. From the definition of each field
energy, it is possible to deduce the movements of each local energy. Indeed, the
energy of the Boolean fields do not move, while the distance fields energy move
to the local maxima. From these considerations, the evolution of all the fields
can be summarize into a unique space-time diagram showing the particles, the
walls and the energy traveling in the cellular space (Fig 4.10).

This figure exhibits a whole evolution from an initial configuration with a
compact set of particles placed slightly to the left of the center of the space. The
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final configuration (bottom of the second column) shows a regularly placed set
of particles. The figure also shows how the energy decreases. Indeed, the signals
that reach the border of the space simply disappear. There are also cases where
a positive and a negative signal of same value meet the same source at the same
time and no movement of that source is created. When there is no more signal
in the system, the fixpoint is reached and the placement is regular.

However, it is possible that some signals never leave the system and cause
cycles by their interaction. An example is shown in Fig. 4.11(a). Such cycles
are created by small signals of opposite signs placed in a region of space such
that the displacement caused by one is canceled by the other. However, signals
of opposite signs just vanish if they meet. But this vanishing can not happen
because both signals have the same speed.

One can notice that relaxing the synchronicity of the system will change the
signals movements relatively to each other into Brownian ones and the signals
will eventually meet. In the same vein, another solution is to slow down one
of the signals probabilistically, the positive one for instance. The slow down is
achieved preventing a 1-site particle or wall to become 2-sites when moving to
the right on reception of a positive signal. Formally, when such a condition is
verified on an edge, its openness is probabilistic:

Slow[f ]t(x, y) = x < y ∧ ft(x) = ft(y) ∧ rand(p),

where rand(p) is true with probability p. Figure 4.11(b) shows the results.





dp = D[p]
dw = D[w]

p = M ′[p0, B[dp] ∧ Dir[dw,≤] ∧ Slow[dw]]
w = M ′[w0, B[dw] ∧ Dir[dp,≤] ∧ Slow[dp]]
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(a) (b)

Figure 4.11: (a) Space-time diagram of cycle with two particles. (b) With the
probabilistic rule with p = 0.8, the signal is sometimes retained.

Figure 4.12: Two opposite signals running in cycle between a wall and a particle
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Earlier version of this chapter has been published in [35].

Until now, we mainly considered unidimensional cellular space. This chapter,
and the following tackle multi-dimensional cellular spaces, using the usual bi-
dimensional spaces presented in Chapt. 2 as example (Fig. 2.1). In this chapter,
we present and solve the convex hull problem. By doing so, we show that a
promixity graph is explicitly computed during the construction of the convex
hull of arbitrary distant particles. The full mathematical study of this proximity
graph is tackled in the next chapter.
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(a) Concave set (b) Convex set (c) Convex hull

Figure 5.1: Euclidean convexity: gray: considered set, black points: particles

5.1 Problem Statement

5.1.1 Informal Statement

As a general definition, a convex hull algorithm determines for a given set of
particles placed in a space, the set of points of the space that belongs to the
convex hull of the particles. A classical notion of convexity exists for Euclidean
spaces. However, other kinds of convexity can be defined for Euclidean spaces,
and also for other kind of spaces. In order to precisely define the problem, we
then have to clarify which convexities are adapted to the cellular spaces we use.

5.1.2 Classical and Abstract Convexity

The most known and studied convexity is defined over Euclidean spaces. In this
context, a subset is convex if it contains all the segments joining any two of its
points. For example, Fig. 5.1(a) shows a non convex set, commonly called con-
cave set, along with a segments that are not contained it the set. In Fig. 5.1(b),
it is not possible to find any missing segment. The set is therefore a convex set.
The convex hull of a set of particles is the smallest convex set containing the
particles. Figure 5.1(c) gives an example of convex hull.

It is possible to characterize Euclidean convex sets and convex hull in many
different ways. For example, one can use the fact that the intersection of two
convex sets is also convex, and the fact that a straight line (or a flat plane in
3D and so on) cuts the Euclidean space in two convex half-space. Therefore,
any convex set is the intersection of many half-spaces, and the convex hull of
a set of particles can be defined as the intersection of all half-spaces containing
the particles. Sub-parts of theses properties, and of many others, have been
selected in different cases to derive different generalizations.

In abstract convexity theory [31, 44], convexity is defined using the relation
that the intersection operator puts on the collection of all convex sets. The
space itself is then viewed as a simple set. Because of its generality, almost all
convexities are specific cases of this one, which is formally defined as:

Definition 5.1.1. A convexity C ⊂ 2
S over a set S is a collection of subsets

of S, called convex subsets or convex sets, that is closed under intersection.

Definition 5.1.2. For a given convexity C over a set S, the convex hull HC(P )
of an arbitrary subset P of S is the minimal convex set containing P .
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(a) 4-square (b) 8-square (c) hexagonal

Figure 5.2: Straight lines in cellular spaces

(a) 4-square with θ = 90 (b) 8-square with θ = 45 (c) hexagonal with θ = 60

Figure 5.3: θ-convex hulls in cellular spaces

5.1.3 Convexity and Cellular Spaces

For the particular cases of cellular spaces, we present here two approaches, the
one considered in the state of the art of convex hull computation by cellular
automata, and the one that we will consider for our solution.

The first approach is to consider the positions of the sites in Euclidean
space. The discreteness of cellular spaces is handle by identifying the angles
of the straight lines that fits to the given cellular space as shown in Fig. 5.2.
Therefore, a subset is considered to be convex if it is Euclidean convex and it
is only composed of straight lines admitted by the cellular space. The 4-square,
8-square, and hexagonal cellular spaces thus respectively allows angles that are
multiple of 90◦, 45◦and 60◦. This concept is called θ-convexity, and examples
of θ-convex hull are shown in Fig. 5.3.

Definition 5.1.3. In the Euclidean plane, θ-convexity is the collection of all
intersections of half-spaces whose angle is a multiple of the angle θ.

The second approach consists in forgetting any Euclidean space and only
considers cellular spaces and their associated metric. Indeed, Euclidean convex-
ity is a particular case of metric convexity. This latter is defined over metric
spaces, and replace the segments used to define Euclidean convexity by the more
general concept of shortest path. More precisely:

Definition 5.1.4. A subset P is metric convex if it contains all the shortest
paths joining any two of its points, i.e. ∀x, y ∈ P, [x, y] ⊆ P .
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Figure 5.4 shows an example of metric convex hull for each considered cel-
lular space. Comparing with the θ-convex hulls of Fig. 5.3, we can see that
they are equivalent for the 4-square and hexagonal cellular spaces. In fact, this
equivalence holds for any set of particles. However, they differ for the 8-square
cellular space, where metric convex hull is bigger than the θ-convex one.

Conceptually, θ and metric convexities are equivalent on the 8-square cel-
lular space if one associates a length of

√
2 to the diagonal edges. Indeed, the

diagonals length is the factor that decides whether the two paths showed in
Fig. 5.5 are of same length or not. It is also possible to note that the 8-square
θ-convex hull can be obtain as an the intersection of the 4-square metric convex
hull and the 8-square metric convex hull. Indeed, the set of half-spaces on the
4-square metric convexity, completed with those of the 8-square metric convex-
ity corresponds to the set of half-spaces on the 8-square θ-convexity. Working
with metric convexity thus allows to obtain more generality.

5.1.4 Formal Problem Statement

Given any set of static particles P , the goal is to find a rule R which converges to
a convex hull configuration. Formally, there has to be some instant t′, depending
on P , such that for any t > t′, we have Rt(x) ≡ x ∈ HC(P ). For the reason
given in the previous subsection, we consider the convexity C to be the metric
convexity defined in Def. 5.1.4. Figure 5.4 therefore shows examples of initial
and final configuration for the different cellular space. The black cells alone
correspond to the initial configurations and the black and gray sites together
correspond to the final configurations.

5.2 Pre-existing Solutions

First of all, there is no pre-existing solution that handles the problem at the
generality level defined here. Indeed, all of them actually consider the 8-square
cellular space with 45-convexity. Also, they both start with a connected region
that is then transformed into a convex hull.

The first simple solution is directly related to the well-know majority rule,
and works mainly for connected set of particles. The second one needs the

(a) 4-square (b) 8-square (c) hexagonal

Figure 5.4: Metric convex hulls in cellular spaces
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(a) Two paths (b) With length 1 (c) With length
√

2

Figure 5.5: Effects of the choice of the diagonals length

Inside bordering sites:

Outside bordering sites:

Figure 5.6: Neighborhoods at the border of a 45-convex hull

set of particle to be initially enclosed in a bounded region, which is equivalent
to considering that the space itself is bounded. Moreover, this solution has a
global stage transition, the first stage shrinking the initial enclosing region, and
the second stage re-expanding the region to finally obtain the convex hull. We
describe those solutions more precisely in the two following sub-section.

5.2.1 Connected Set of Particles and Majority Rule

In [6], some of the first proposed rules to the convex hull problem are described.
These rules can be obtained by examining the local configurations that appear
in the convex set configuration, and contrasting them with those that appear in
non-convex connected set of particles.

Considering the convex set shown in Fig. 5.6 for example, we can see that
sites that are at the outside border of the convex set always have less than 4
neighboring sites in the convex hull. Also, considering any site of the convex hull,
we can notice that if its removal leads to a non convex set, then it has at least 4
neighboring sites in the convex set. We can therefore consider the following rule
that selects a site if at least 4 neighboring sites are already selected. Figure 5.7
shows an evolution of this rule from a connected set of particle.

majot+1(x) = x ∈ P ∨ card{ y ∈ N(x) | majot(y) } ≥ 4

Being just a counter on the neighborhood with a threshold, this rule is just a
particular case of the voting rule. The behavior of the voting rule is described in
[26], along with its convex hull behavior when the threshold is half the number
of neighbors. This is the case here, since we consider the threshold 4 while there
are 8 neighbors per sites:

majot+1(x) = x ∈ P ∨ card{ y ∈ N(x) | majot(y) } ≥ card(N(x))

2
(5.1)
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Figure 5.7: Majority rule on a connected set of particle

Figure 5.8: Convergence to many convex hulls

In fact, this rule has an interesting, although not necessarily surprising,
behavior when used on non-connected set. Indeed, the set of particles does not
need to be connected, but simply denser enough, since only quantity matters.
In the general case, a set of several partial convex hulls are obtained. The
interesting thing is that, as more and more sites are selected by the rule, many
partial convex hulls can merge to form bigger convex hulls that can also merge,
and so on. For example, Figure 5.8 shows an evolution that converges to
many convex hulls. But moving just one particle of the initial configuration of
Fig. 5.8 leads to the evolution shown in Fig 5.9. This latter converges to one
global convex hull.

5.2.2 Set of Particles Enclosed in a Connected Region

In [46, 14], a rule is proposed that does not require the set of particles to be con-
nected but instead to be enclosed in a connected, compact and bounded marked
region. In other words, this rule requires the space to be bounded, considering
the space itself as marked region. An example of initial configuration is shown
in Fig. 5.10(a).

The proposed rule plays with the same idea of identification of interesting
neighborhood at the border, and consists of two globally successive stages. The
first one erodes the marked region to obtain a connected region which is included
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Figure 5.9: Convergence to one global convex hull
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(a) Initial configuration (b) After Erosion (c) After Expansion

Figure 5.10: Stages from wrapped seeds to their convex hull: The initial wrap-
ping (a) is shrunk into (b) and is then grown to convex hull (c)

(a) (b) (c)

Figure 5.11: Example of many minimal isometric sets for one given set: with
two points, it amounts to consider different shortest paths

in the convex hull. This ensures the minimality condition (see Fig. 5.10(b)).
After a detection of the end of this stage, the second stage is launched, which
corresponds to a slightly modified version of the solution described in the pre-
vious subsection. Thus, the eroded connected region is re-expanded into the
45-convex hull of the set of particles (see Fig. 5.10(c)).

The crucial part of that solution is the erosion stage. In fact, the eroded
region corresponds to a minimal isometric set, such that between any two sites
of the region, at least one shortest path is contained in the set. The problem
is that there can be many minimal isometric sets for a given set of points, and
the intersection of all of them can actually be disconnected. For example, a
minimal isometric set for two sites is simply made of one shortest path joining
them (see Fig. 5.11). For the example shown in Fig. 5.11, the intersection of all
the shortest paths consists of the extremities and nothing else.

Therefore, the rule has to be defined in order to prevent different sites to
make choices that are not coherent with the others sites when removing a site
from the region. Otherwise, the eroded region can be non-connected. This is
done in two stages, by indicating at first the wish list removal, and then by
choosing a preferred direction to resolve conflicts.
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(a) 4-square (b) 8-square (c) 8-square-
√

2 (d) hexagonal

Figure 5.12: Intervals for different grids

5.2.3 Comparison with our Solutions

Our approach tackles the problem at the full generality level defined in the
problem statement. For the first solution presented in Sect. 5.2.1, we have a
finer rule that follows directly from the convex hull definition. It does not need
more states but is able, for example, to handle the cases of diagonally connected
set. For the second approach presented in Sect. 5.2.2, we are able to construct
the convex hull on infinite spaces without anything else than the particles at the
initial state. Our cellular automaton converges locally: any bounded region of
the space eventually converges. It is the best that can be done since there are
signals lost in the infinity of the space, looking for other points arbitrarily far
from its emission source. Also, we do not break any symmetries of the spaces by
choosing a preferred direction in the rule. Everything only relies on distances,
and is thus completely rotational invariant. Informally, we can summarize by
simply saying that our approach is “more natural”.

The rule applies directly to many bi-dimensional grids, including the ones
listed in Fig. 2.1. It also works for the tridimensional counterpart of those. Last,
it can easily be applied to bigger neighborhood, resulting in faster convergence
when needed.

5.3 Solution Description

The main anchor of our approach is the fact that constructing the metric convex
hull is in fact a matter of adding all missing shortest paths. Between two points
x and y, the union of all paths joining them is called the interval. Figure 5.12
shows some example of intervals.

Definition 5.3.1. An interval [x, y] between two points x and y in a metric
space (M,d) is the set of points { z ∈ M | d(x, z) + d(z, y) = d(x, y) }. Points
of [x, y] are said to be between x and y.

So let us define the operator I(P ) =
⋃{[x, y] | (x, y) ∈ P 2} that adds the

shortest paths joining a set of points. It is easy to see from Def. 5.1.4 that a set
C is metric convex if and only if I(C) = C. Also, the convex hull of a set of
points P is the limit of the sequence I(P ), I(I(P )), . . . , In(P ). Indeed the limits
L = In(P ) verifies the convexity condition I(L) = L, the minimality condition
being ensured by the fact that I(•) only adds points that have to be in the
convex set.

In the following, we start off by considering the easiest detectable shortest
paths: those that are entirely contained in the neighborhood of a site. This will
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lead us to the definition of local metric convexity. We will also observe strong
similarity with the majority rule described in Sect. 5.2.1 and explain their rela-
tion.

Our next step will be to consider the detection of arbitrarily long shortest
paths. So given two arbitrarily distant particles, we will show how to detect
the shortest paths joining them. We restrict the study to the hexagonal cellular
space cases. In this setting, we will observe the behavior of the obtained rule
when many particles are in the space. This will lead us to the definition of the
new concept of metric Gabriel graph. From it, we will be able to generalize
the results to all the considered cellular spaces and their counterpart of higher
dimensionality.

5.3.1 Hull for Local Metric Convexity

5.3.1.1 The local metric convexity rule

In order to easily fit in the locality constraints of CA, we consider first the
detection of paths entirely contained in the neighborhood of a site. If we consider
a neighborhood of radius r, this amounts to say that we detect all shortest paths
of length 2r or less. To complete a set P with those paths, each site lying on
a shortest path between two marked sites of its neighborhood marks itself as
expressed in the following rule:

convt+1(x) = x ∈ P ∨ ∃{y0, y1} ⊂ convt ∩B(x, r)\{x};x ∈ [y0, y1] (5.2)

Let us mention that testing x ∈ [y0, y1] with hop count metric and r = 1
is equivalent to testing d(y0, y1) = 2 since x ∈ [y0, y1] ⇔ d(y0, x) + d(x, y1) =
d(y0, y1) and y ∈ B(x, 1)\{x} ⇔ y ∈ N(x) ⇔ d(x, y) = 1. For the {1,

√
2}

metric, the test has to be done explicitly, and the neighborhood radius r is
√
2

since we consider the 8 neighbors of each site.

The conv rule has roughly the same global behavior than the majority rule
presented in Sect. 5.2.1 in the sense that it generally produces a set of partial
convex hulls and that the convex hulls can merge to form bigger convex hulls
during the evolution. This can be observed in the evolution shown in Fig. 5.13.

However, the conv rule is more precise than majo. Indeed, it detects strictly
more neighborhoods than the majority rule. As an example, one can note that
the initial configuration of Fig. 5.13 is a fixpoint for the majority rule. More im-
portantly, the conv rule produces a global convex hull for diagonally connected
set of particles, where majo can only deal with horizontally and vertically con-
nected set of particles as depicted in Figs. 5.14 and 5.15.

5.3.1.2 Formal summary of conv properties

Let us summarize the main properties of conv in few precise and concise formal
statements. First, let us define the convexity which is obtained by using this
rule:

Definition 5.3.2. The local metric convexity of radius r is the collection of
subsets of the space that are locally metric convex at radius r.
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Figure 5.13: Evolution of the conv rule with neighborhood radius 1

Figure 5.14: Evolution of conv on a diagonally-connected set of particle
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Figure 5.15: Evolution of majo on a diagonally-connected set of particle

Definition 5.3.3. A subset is locally metric convex at radius r if for any two
of its points x and y of distance d(x, y) ≤ r, all shortest paths joining them are
in the subset.

Proposition 5.3.4. The conv rule defined in Eq. (5.2) applied with a neigh-
borhood radius r on an initial configuration corresponding to a set of particle P
converges to the local metric convex hull at radius r of P .

Now, let us identify formally the cases where conv produces the global metric
convex hull. Informally, let us define r-connectedness as the property, for a set
of particles, to be able to go from a particle to any other particle by jump from
particle to particle, with jump size less or equal to r.

Proposition 5.3.5. For any r-connected set of particles P ⊂ S, the local metric
convex hull of radius r of P corresponds its metric convex hull.

It is interesting to note that in terms of r-connectedness, we can simply say
that the majo rule produces the {1,

√
2} metric convex hull for 1-connected set

of particles on 8-square cellular spaces.

5.3.1.3 Considering larger neighborhood radius

In all previous figures, we have used either a neighborhood radius of 1 or
√
2.

Let us now consider larger neighborhood radius and look at the resulting evolu-
tion. An example with r = 3 is shown in Fig. 5.16. On the initial configuration,
on the top, we can see pairs of particles separated of distances 6, and 5; and
on the right, distances 4 and 2. After one transition, we see that some sites are
marked at the middles of each pair.

More generally, at each transition, a path of length 2r whose extremities are
marked will only have its middle marked, thus splitting itself into two shortest
path of length r. More generally, any path of length r < l ≤ 2r will see its a
centered segment of size 2r − l detected at its middle, thus splitting itself into
two shorter segments. Paths of length l ≤ r will simply be entirely marked,
since all of its points are able to see the both extremities in their neighborhood.
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Figure 5.16: Evolution of the conv rule with neighborhood radius 3

5.3.2 Hull for Global Metric Convexity

Since we have reached the local convexity goal, involving only shortest paths
of length 2r or less, let us now target shortest path of arbitrary length. Given
two particles, the goal is then to draw the shortest paths linking them. In this
setting, the goal is to select sites of the interval between the particles, as shown
in Fig. 5.12.

5.3.2.1 Paths Joining Two Distance Particles

As for the previous case, we know that the middles of the paths are the first to
have enough information to be marked. For a site z to know if it is at the middle
between two points x and z, it needs to check z ∈ [x, y] as before, but in the
case d(x, z) = d(y, z). Determining the value d(x, z) = d(y, z) is easily achieved
using a single distance field, as it has already been done in Chapt. 4. However,
determining z ∈ [x, y] is more tricky, since we need to check a last condition:
d(x, y) = 2d(x, z) = 2d(y, z). Our approach has been to use the gradient of the
distance field to determine if the sites {x, y} are at opposite directions. Before
attacking the general case, we start by identifying what we need to detect on
the particular case of the hexagonal cellular space.

In order to consider all the local distance field configurations correspond-
ing to the middle of a shortest path on an hexagonal cellular space, we need
to take into account all the ways two hexagons can touch each other. From
this, we can construct a rule that simply mark a site if its neighborhood is
the hand-made list of middle configurations. We do not gives the details since
only the results really matter for the moment. Let us just consider one example.

Figure 5.17 show the evolution of a distance fields from two distant parti-
cles (see Chap. 3 for the rule and reason why we can use it even in finite state
context). We can see at time 4 that there are particular local configurations
that can only happen at the middles between two particles. All the other con-
figurations that appear somewhere else in the rest of the evolution have to be
discarded for the middle detection rule. Using this hand-made rule, we can
obtain the evolution of Fig. 5.18 until time 5 where the middles appears.

The rest of the evolution is obtained easily. Let us consider any site y of
the interval, except the middles. It has all required information since it knows
its distance value d(y, z) to the nearest particle z, the distance value of any
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Figure 5.17: Distance fields from two particles

Figure 5.18: Detected middles and paths back to both particles

neighbor d(x, z) to the same nearest particles, and the distance d(x, y). It can
thus determine whether it is on a shortest path joining x and z, i.e. y ∈ [x, z],
or not. If it is the case, and x is marked as being in the convex hull, y can also
mark itself. In fact, we can see that this propagation simply corresponds to a
movement from the middles back to the particles. Therefore, we can express it
by opening the good edges for the traffic from the middles back to the particles
(see Sect. 3.5).

back[f ]t(x, y) = d(x, y) + ft(y) = ft(x) (5.3)

5.3.2.2 Pairwise Construction of the Hull ?

We now have a way to construct the convex hull of two particles using one
distance field for the pair. When considering many particles, we cannot build
many distance fields as we need the number of states to be constant. The ques-
tion that naturally arises concerns the way each particle perturbs the distance
field of the others. Indeed, we actually have a way to connect two particles and
thus, we only need to connect them pairwise and locally while ensuring a global
connectedness. If we can have a connected result, the conv rule described in
Sect. 5.3.1 in parallel with the other rules will lead to the global convex hull.

Figure 5.19 shows the evolution of the pairwise convex hull described in the
previous section (Sect. 5.3.2.1) in the presence of many particles. We can see
that we obtain a connected set which looks like a proximity graph. Let us
make the link between the considered algorithm (distance field, middle detec-
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Figure 5.19: Construction of pairwise convex hull

tion, movement back to the particles) and the resulting connected set.

We have said that we detect the middles from the distance fields. When
many particles are present, the detection of a middle may be prevented by the
destroying of the information due to the presence of another particle nearby. Us-
ing the Voronoi diagram vocabulary, we can say that we can detect the middles
between two particles only if it belongs to the Voronoi boundary between the
Voronoi regions of the considered particles. When another particle is too close, a
middle may fall in Voronoi region of that particle, thus preventing any detection.

So it seems that two particles are connected by this proximity graph if there
is a shortest path joining them included in their Voronoi regions. This very
interesting relation with the Voronoi diagram defines actually an existing prox-
imity graph related to Delaunay graph, namely Gabriel graphs. This graph
is connected, among other good properties, but is only defined for Euclidean
spaces. Since the hand-made list of local configurations that only works for
the hexagonal grid is not in the spirit of this work, the next logical step is to
further study Gabriel graphs and to generalize them so that they can be drawn
on any considered cellular spaces in a connected way, thus allowing our convex
hull algorithm to solve the problem with full generality.

To summarize, let us write the system corresponding to the construction of
the convex hull. If we denote as cent[f ] the field detecting the shortest path
middles on the distance field f :





dp = D[P ]
m = cent[dp]
g = M ′[m, back[dp]]

gconv = conv[g]

(5.4)
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Early version of this chapter has been published in [36].

Gabriel graphs are proximity graphs introduced in [19] to study sets of geo-
graphical points. They are now used in many domains such as wireless [28] and
sensors networks for routing and communication management purpose. They
also serve as tools to study proximity of points in order to cluster them, in do-
mains like data mining, data and multivariate analysis [8], and machine learn-
ing [37, 12]. In computer graphics [39, 29], they can help to convert a set of
points into a 3D surfaces and to obtain information about such surfaces. Their
wide spread use is due to their numerous properties. Indeed, they are related to
Voronoi diagrams, Delaunay graphs, planar graphs, minimum spanning trees,
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nearest neighbor graphs, and represent or contain optimal solutions for some
classes of energy-minimizing problem [28].

In the previous chapter, we have seen how the construction of the convex hull
of a set of particles in a cellular space leads naturally to consider this proximity
graphs. In this chapter, we describe a new generalization of Gabriel graphs that
we call metric Gabriel graphs. The former carries properties of Gabriel graphs in
any metric space, which allows to use them in the considered cellular spaces in
particular. We also present the cellular automata that draws the metric Gabriel
graphs.

6.1 Mathematical Problem Statement

In this section, we show that the original Gabriel graph does not accommodate
the particularities of the cellular space. We highlight the fact that the origi-
nal definition relies on many uniqueness properties of the Euclidean space, the
uniqueness of the segment linking two points for example. Cellular spaces do not
have these uniqueness properties, so a generalization of the original definition is
needed.

6.1.1 Original Gabriel graphs

Gabriel graphs have originally been designed for Euclidean spaces in terms of
angle [19]. Considering a set of points, its purpose is to connect by an edge those
considered to be close. Due to properties of Euclidean spaces, many equivalent
definitions have been used, one of them being:

Definition 6.1.1. The Gabriel graph GG = (VG, EG) of a set of particles P in
a Euclidean space of arbitrary dimension R

n has VG = P as set of vertices, and
an edge {x, y} ∈ EG between two particles x and y of P if and only if the ball
using the segment [xy] as diameter does not contain any other particle.

This mathematical structure has many good properties and relationships
with other well-known graphs. For instance, for a Euclidean space of any di-
mension, and for any set of particles, we have GNN ⊆ MST ⊆ GG ⊆ GD where
GNN is the nearest neighbor graph, MST is any minimum spanning tree and
GD is the Delaunay graph [1, 27].

The relationship between Gabriel and Delaunay graphs can be made more
explicit by using Voronoi Diagrams [9, 5]. In fact, the edges of the Delaunay
graph connect particles of adjacent Voronoi region, while the Gabriel graph re-
tains only edges that do not pass through the Voronoi region of another particle
(see Fig. 6.1).

6.1.2 Relationship with general metric spaces

Despite the fact that Gabriel graphs are defined for Euclidean spaces, their defi-
nition only involves distances, so that a generalization to arbitrary metric spaces
seems natural. However, there are significant differences between Euclidean and
general metric spaces, which can break Gabriel graphs properties such as their
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(a) Gabriel graph (b) Delaunay graph (c) Both on Voronoi Diagram

Figure 6.1: Gabriel and Delaunay graphs and Voronoi Diagram Relations

(a) Hexagonal cellu-
lar space

(b) Hexagonal cellu-
lar space

(c) 4-Square cellu-
lar space

(d) 4-Square cellu-
lar space

Figure 6.2: Non-uniquenesses in hexagonal and square grids: (a,c) lines indicate
possible shortest paths, and crosses indicate many possible centers for the balls,
(b,d) the isolated point forms a diameter for the ball with any of the other
points

connectedness as we will show.

Indeed, the original definition mainly relies on the existence of enough: ball
using the segment [xy] as diameter does not contain any other particles. In an
Euclidean space, for a given closed ball B(c, r) and a given point x such that
d(c, x) = r, there exists a unique point y such that the segment [xy] is a diam-
eter for that ball, i.e. d(x, y) = 2r.

In an arbitrary metric space, this uniqueness is lost as shown in Fig. 6.2(b,d).
In the same vein, a pair of points is not a diameter for only one ball in an ar-
bitrary metric space. Indeed, the uniqueness of this ball in Euclidean space is
implied by the uniqueness of the shortest path linking two points. When many
shortest paths exist between two points of a metric space, they can have dif-
ferent middles, which leads to many balls, all having the same radius, but each
being centered at a different middle (see Fig. 6.2(a,c)).

Fig. 6.3 gives an example of loss of connectedness due to the fact that there
may be no ball having only two particles. We therefore need to modify the
definition to take into account these particularities in a meaningful way.

6.1.3 Pre-Existing generalizations

Generalizations of Gabriel graphs have already been proposed in different do-
mains. For example, geodesic Gabriel graphs are a generalization proposed for
non-linear manifolds [12] use in classification, generalized Gabriel graphs for
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(a) Each point (b) Each line (c) Each diagonal (d) Subcase of (c)

Figure 6.3: Hexagonal and square grid: the Gabriel graph is not connected.
Grey points show one of the connected components and gray balls give the
reason of the non-connectedness

wireless ad hoc network [28] and elliptic Gabriel graphs for computer graph-
ics [39, 29]. All these generalization consider a change in the shape of region
considered for edges selection. The goal is not to conserve the Gabriel graph
but rather to modify it to see if better results can be obtained. Moreover, the
connectedness is not ensured, which is not a problem for domains like classifi-
cation or computer graphics where it can even be a feature.

Our goal is to conserve the Gabriel. We look for a generalization which gives
back the original Gabriel graph when applied to Euclidean spaces, but can also
be used for non-Euclidean spaces while preserving all of its general properties.
So we need a new generalization of Gabriel graphs.

6.2 Metric Gabriel Graphs

In order to find a definition that fits our need, and cope with non-uniquenesses,
we redefine the Gabriel graph from basic principles. Indeed, it seems that its
properties are consequences of three principles: connectedness, minimality, and
locality. From them, we deduce a new definition characterizing the original
Gabriel graphs, but applicable to any metric space.

6.2.1 Principles of Gabriel Graphs

Let us informally derive the consequences of the three principles that we have
identified: connectedness, minimality, and locality.

Minimality and connectedness Let us start with a complete graph con-
necting all pairs of particles. We want to remove as many edges as possible in
order to obtain minimality, while preserving the connectedness. So we consider
minimum spanning trees.

Locality and connectedness While removing the edges, we don’t want to
arbitrarily choose an edge when many solutions are equivalent, otherwise there
will be a need for a global coherence to achieve connectedness. So we consider
now the union of all minimum spanning trees.

Locality and minimality For an edge to decide if it is part of a minimum
spanning tree or not, it needs to take into account arbitrarily far particles to
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ensure minimality of the global result. Instead, we want the edge to decide its
status by examining only nearby particles. So we finally consider the union of
all local minimum spanning trees.

These principles characterize Gabriel graphs in a general way. Especially, the
locality principle informally explains the natural adequation with the cellular
automata framework. We will now see that their direct applications to metric
spaces define a new structure that generalizes Gabriel graphs into metric Gabriel
graphs.

6.2.2 From Principles to Definition

In order to obtain a definition from the principles, the only missing piece is
a precise definition of what are the “nearby particles of an edge”, i.e. what
does local mean. The original Gabriel graph definition actually considers the
particles contained in the smallest ball B(c, r) containing the edge {x, y}. With
this last ingredient, we obtain the following definition:

Definition 6.2.1. The metric Gabriel graph GMG = (VMG, EMG) of a set of
particles P has VMG = P as set of vertices and an edge {x, y} ∈ EMG between
two particles x and y if and only if there is a ball B(c, r) such that d(x, y) = 2r
and {x, y} is an edge of a minimum spanning tree of P ∩B(c, r).

This definition may look complex, and in fact, we show latter that it can
be simplified into the equivalent definition given in Prop. 6.2.8. However, it
expresses directly the principles and allows convenient formal manipulations by
the use of the cut and cycle properties of minimum spanning trees (See Ap-
pendix A.2). As for the original definition, the definition relies of the existence
of some balls having special properties. Let us call them metric Gabriel ball:

Definition 6.2.2. A ball B(c, r) is a metric Gabriel ball for a set of particles
P if and only if there is two particles x and y such that d(x, y) = 2r and {x, y}
is an edge of a minimum spanning tree of P ∩B(c, r).

6.2.3 Preservation of the Properties

Proposition 6.2.3. Metric Gabriel graphs are connected graphs.

Proof. By contradiction, we suppose that GMG is not connected. Let x and y
be the two closest particles belonging to different connected components. Since
we consider a complete length space, there is a shortest path joining x and y.
Let c be the middle of this shortest path. Let us consider a ball B(c, r) such
that d(x, y) = 2r.

Since x and y belongs to different connected components, we already know
that {x, y} is not a metric Gabriel edge. This means that it is not an edge for
any minimum spanning tree of P ∩B(c, r) neither.

Let us consider the path v0, . . . , vl−1 connecting x = v1 and y = vl−1 in a
minimum spanning tree of of P ∩ B(c, r). Adding the edge {x, y} to this path
leads to a cycle. By the cycle property of minimum spanning trees, every edge
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{vi, vi+1} of the path is such that d(vi, vi+1) < d(x, y).

Since x and y are the closest point belonging to different connected compo-
nent, d(vi, vi+1) < d(x, y) means that vi and vi+1 belongs to the same connected
component. By transitivity, all vi belongs to the same connected component,
even v0 = x and vl−1 = y, which is a contradiction.

Proposition 6.2.4. Metric Gabriel graphs contains all minimum spanning trees

Proof. It is the union of all local minimum spanning trees.

Proposition 6.2.5. Metric Gabriel graphs are sub-graphs of the Delaunay graph
made of the edges that do only pass through the Voronoi regions of its extremity
particles.

Proof. To prove this, we mainly need to consider the middle of a path joining
two metric Gabriel neighbors x and y. This middle corresponds to the center
of a metric Gabriel ball, so to prove that the path does not pass through any
other Voronoi region, we need to prove that the middle is part of the Voronoi
Diagram. This means that there is no particle closer to the center than x and
y. This corresponds directly to the next proposition.

Proposition 6.2.6. If a ball B(c, r) is a metric Gabriel ball for a set of particles
P , then the radius r of this ball equals the distance d(c, P ). Thus, any metric
Gabriel ball is entirely determined by its center.

Proof. By contradiction, let us assume that the ball B(c, r) is a metric Gabriel
ball but r 6= d(c, P ). So we have two particles x and y, and a minimum spanning
tree as given by Def. 6.2.2. If r < d(c, P ), then P∩B(c, r) = ∅, which contradicts
the existence of two particles. If r > d(c, P ), then there is a particle z of P such
that d(c, z) < r. Let us consider the triangular cycle made of x, y, and z. By
the cycle property of minimum spanning trees, the longest edge of the cycle
belongs to no minimum spanning trees. But d(x, z) ≤ d(c, x) + d(c, z) < 2r and
d(y, z) ≤ d(c, y)+d(c, z) < 2r while d(x, y) = 2r. This contradicts the existence
of the minimum spanning trees implied by Def. 6.2.2.

Proposition 6.2.7. A ball B(c, r) is a metric Gabriel ball for a set of particles
P if and only if P ∩B(c, r) can be partitioned into {P0, P1} with d(P0, P1) = 2r.

Proof. Firstly, by the cut property, the existence of a cut {P0, P1} is equivalent
to the existence of a minimum spanning tree containing an edge (x, y) ∈ P0 ×
P1 such that d(x, y) = d(P0, P1). Then, having d(P0, P1) = 2r implies that
d(x, y) = 2r, since 2r is the diameter of the ball B(c, r). Those two facts prove
the equivalence.

This latter proposition can be used to give a definition of metric Gabriel
graphs directly comparable with the original one.

Proposition 6.2.8. The metric Gabriel graph GMG = (VMG, EMG) of a set of
particles P has VMG = P as set of vertices and an edge {x, y} ∈ EMG between
two particles x and y of P if and only if there is a ball B(c, r) such that there
is a cut {P0, P1} of P ∩B(c, r) with (x, y) ∈ P0 × P1 and d(P0, P1) = 2r.
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Compared to the original definition of Gabriel graphs, this definition deals
with the non-uniqueness of diameters by replacing the requirement of having
two points x and y such that d(x, y) = 2r by the requirement of having two sets
of points P0 and P1 such that d(P0, P1) = 2r. The non-uniqueness of balls for a
given diameter is managed by requiring only the existence of at least one such
ball. This means that whenever diameters and balls are unique, this definition
is equivalent with the original one, as it is the case for Euclidean spaces.

Proposition 6.2.9. For any Euclidean space, and any set of particles P of that
space, the Gabriel graph and the metric Gabriel graph are identical.

6.3 Metric Gabriel Graphs on Cellular Automata

Now that we have completely defined mathematically the structure that we want
to construct, we need to study the properties that will allow us to effectively
construct it. In the previous chapter, we already considered its construction in
fact. It consists of three fields. The first one is the distance field of the particles.
The second field detects the middles of the shortests path joining neighboring
particles. These middles correspond to the centers of the metric Gabriel balls.
The third field draws the shortest paths from the metric Gabriel ball centers to
their corresponding particles.

The main field is the one detecting the metric Gabriel ball centers using the
values of the distance fields. From the definitions, we know that to determine
if a site x is the center of a metric Gabriel ball of P , we need to examine
P ∩B(x, d(x, P )). Let us consider a set P of three particles, their distance field,
a site x, and its associated ball B(x, d(x, P )) as depicted in the first column of
Fig. 6.4(a).

6.3.1 Distance fields and dilations

Examining the ball B(x, d(x, P )), we can see that the two particles contained
in it have distance 8, which is twice the radius 4 of the ball. So this site is a
metric Gabriel ball center. We wish to determine this by using the distance
values present in the neighborhood B(x, 1) of the site x. In the second column
of the figure, we see that the lowest distance values d(x, P ) − 1 present in the
neighborhood can be partitioned in two parts of distance 2, which is twice the
radius of the neighborhood. This means that B(x, 1) is a metric Gabriel ball
for the set B(P, r′) = { y | d(y, P ) ≤ r′ } with r′ = d(x, P ) − 1, as explicitly
shown in the third column. Note that the set B(P, r′) does not look like a set of
points. It is a large connected region obtained by dilation of the three particles.

In Fig. 6.4(b), the considered site x is not the center of any metric Gabriel
ball. Indeed, the two particles contained in B(x, d(x, P )) are at distance 8, which
is less than twice the radius 7 of the considered ball. Again, this is reflected in
the neighborhood of the site, since the intersection between B(P, d(x, P ) − 1)
and B(x, 1) consists of three adjacent dark gray cells, and can not be partitioned
in two parts of distance 2, as it was in the previous case.
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(a) Example of a metric Gabriel ball center

(b) Example of a non-metric Gabriel ball center

Figure 6.4: Relation between distance fields, metric Gabriel balls, and dilations

Figure 6.5: Intersections between dilations and neighborhoods are interval slices

Calling the sets B(P, r′) the dilations of P , we can see that there is a corre-
spondence between the centers of the metric Gabriel ball of P , and the centers
of the metric Gabriel ball of its dilations, at least for the hexagonal cellular
space. Let us consider the general case.

6.3.2 Dilations and interval slices

In the rest of the chapter, we intensively work with the intersections between
the dilations of P and the neighborhoods of a given point x, for different neigh-
borhood radius, i.e. B(P, r′)∩B(x, r). However, this latter has useful properties
because of the particular way the radius r′ and r are chosen, i.e. r′ = d(x, P )−r.
Indeed, this can be rewritten as r′ + r = d(x, P ), which corresponds to the tri-
angular equality, which characterizes points of shortest paths between x and P .

This is illustrated in Fig. 6.5 where such intersections are exposed for differ-
ent neighborhood radius, with the intervals (Def. 5.3.1) depicted for comparison.
In fact, the points of the intersection are the points of the shortest paths from
x to P that are at distance r from x. We call this an interval slice.

Definition 6.3.1. An interval slice [a, r; b] corresponds to the set of points {x ∈
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[a; b] | d(a, x) = r} = {x | d(a, x) = r ∧ d(x, b) = d(a, b)− r}.

Proposition 6.3.2. The intersection between two balls B(a, ra) and B(b, rb)
such that ra + rb = d(a, b) is the interval slice B(a, ra) ∩B(b, rb) = [a, ra; b].

Proof. To prove the equality between the sets B(a, ra) ∩ B(b, rb) and [a, ra; b],
we prove the double inclusion. At first, the points of [a, ra; b] are at distance
ra from a, and at distance d(a, b) − ra = rb to b, so they are clearly points of
the intersection B(a, ra)∩B(b, rb). Next, any point x of B(a, ra)∩B(b, rb) has
distances d(x, a) ≤ ra and d(x, b) ≤ rb. But it is impossible that d(x, a) < ra nor
d(x, b) < rb, since it would violate the triangular inequality d(x, a) + d(x, b) ≥
d(a, b). Thus, d(x, a) = ra and d(x, b) = rb, which means that x is a point of
the interval [a, ra; b].

6.3.3 Correspondence between interval slices

Let us summarize what we know about the correspondence between the orig-
inal set of particle and its dilations. At first, we wish to study the relation
for a site x between being a center of metric Gabriel ball for P 1, and being
a center of metric Gabriel ball for a dilation B(P, r′). Using Prop. 6.2.7 and
Prop. 6.2.6, it amounts to study the partitionability of B(P, 0) ∩ B(x, d(x, P ))
and B(P, r′) ∩ B(x, r) into two parts of distance 2d(x, P ) and 2r respectively,
with r = d(x, P )− r′. Finally, using the interval slices notation, we express this
as the study of the partitionability of [x, d(x, P );P ] and [x, r;P ] into two parts
of distance 2d(x, P ) and 2r.

We now continue the reasonning by the following remark. Considering
that the slice [x, d(x, P );P ] is partitionable into two parts {P0, P1} of distance
d(P0, P1) = 2d(x, P ) means that P0 and P1 are diametrically opposed in the
ball B(x, d(x, P )). Informally, for any r ≤ d(x, P ), the slice [x, r;P ] also ad-
mit diametrically opposed parts {Q0, Q1}, corresponding to the expremity of a
subpart of the diameter {P0, P1}. Let us prove this.

Proposition 6.3.3. Let P be any set of particles, x any point of the space,
and r ∈ [0, d(x, P )]. If [x, d(x, P );P ] admits a partition {P0, P1} such that
d(P0, P1) = 2d(x, P ), then [x, r;P ] admits a partition {Q0, Q1} such that d(Q0, Q1) =
2r.

Proof. Considering each parts P0 and P1 separately, we construct Q0 = [x, r, P0]
and Q1 = [x, r, P0]. It is trivial that Q0 ∪ Q1 = [x, r;P ], from P0 ∪ P1 =
[x, d(x, P );P ]. Also, from d(P0, P1) = 2d(x, P ), and the triangular inequality
d(P0, P1) ≤ d(P0, Q0) + d(Q0, Q1) + d(Q1, P1), we have that 2r ≤ d(Q0, Q1).
But it is not possible that d(Q0, Q1) > 2r so d(Q0, Q1) = 2r.

We would like to also have that if [x, d(x, P );P ] is not partitionable, then
neither is [x, r;P ], in order to have an equivalence rather than an simple impli-
cation. Unfortunately, this is not true in general. Figure 6.6 gives an example
in the 4-square cellular space, whith [x, d(x, P );P ] being a singleton, obviously
not partitionable in two parts. It is shown that with r = 2, the points of the
interval slice, at distance 2 from near to near, are not partitionable in parts of

1The set P can be considered as its own dilation with radius 0, i.e. B(P, 0)
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(a) r = 2 (b) r = 1

Figure 6.6: In both case, the interval slice is 2-connected. With r = 2, there is
partition since 2 < 2r, but with r = 1, 2 = 2r

distance 2r = 4. But with r = 1, the points of the interval slice are still at
distance 2, but this is now twice the radius as required for partitioning.

In fact, the “square holes” of the 4-square cellular space prevents the points
of the interval slices to be closer than 2. The structure of the hexagonal and 8-
square cellular spaces implies a bound of 1. Therefore, the neighborhood radius
has to be strictly greater than 1 and 0.5 respectively. However, this only takes
into account the case where [x, d(x, P );P ] is a singleton.

In order to study the many particles case, this is enough to work with two
particles. Indeed, suppose that for any pair {p0, p1} of a non-partitionable slice
[x, d(x, P );P ], we have that the slice [x, r; {p0, p1}] can neither be partitioned. It
means that [x, r; p0] and [x, r; p1] can not be placed in different part of any par-
tition of [x, r;P ]. Therefore, [x, r;P ] =

⋃
p∈P [x, r; p], can neither be partitioned.

There is no particular problem with the two-particles cases. Figure 6.7
gives an example with the hexagonal cellular space. When considering two
particles, we can see that each time we reduce the neighborhood radius r of a
certain amount, the distance between interval slices Q0 = [x, r; p0] and Q1 =
[x, r; p1] decrease at least by the same amount. So if d(p0, p1) < 2d(x, P ), then
d(Q0, Q1) < 2r.

Proposition 6.3.4. Let P be any set of particles, x any site of the hexagonal

or 8-square cellular space such that d(x, P ) ≥ r with r = 1. [x, d(x, P );P ]
admits a partition {P0, P1} such that d(P0, P1) = 2d(x, P ) if and only if [x, r;P ]
admits a partition {Q0, Q1} such that d(Q0, Q1) = 2r.

Proposition 6.3.5. Let P be any set of particles, x any site of the 4-square

cellular space such that d(x, P ) ≥ r with r = 2. [x, d(x, P );P ] admits a
partition {P0, P1} such that d(P0, P1) = 2d(x, P ) if and only if [x, r;P ] admits
a partition {Q0, Q1} such that d(Q0, Q1) = 2r.

6.3.4 Odd distances and edge-centered metric Gabriel balls

Until now, we have only considered integral radius. This means that we have
only taken into account the pairs of particles of even distance 2r. When the
distance is odd, the center is, in fact, the middle of an edge. To be able to
consider the edges middles, we complete the space with segments of unit length
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(a) One particle (b) Two particles (c) r = 4 (d) r = 3

Figure 6.7: (a) A particle produces a non-partitionable slice (b) Two non sep-
arable particles produce a non-partitionable slice (c,d) Slightly more complex
examples with 2 particles

between any pair of neighboring sites. Therefore, the distance of the middle of
an an edge to its extremities is 1

2 .

Considering the edges does not introduce any particular problem, since most
of the results applies to arbitrary metric space. Only the neighborhood radius
needs to be adjusted for this special kind of metric Gabriel ball center. Since the
neighborhood radius has to be strictly greater than 1 and 0.5 for hexagonal/8-
square cellular space and 4-square cellular space respectively, this gives the same
radius 1.5 for all these spaces.

Proposition 6.3.6. Let P be any set of particles, x any edge middle of the

hexagonal, 4-square or 8-square cellular space such that d(x, P ) ≥ r
with r = 1.5. [x, d(x, P );P ] admits a partition {P0, P1} such that d(P0, P1) =
2d(x, P ) if and only if [x, r;P ] admits a partition {Q0, Q1} such that d(Q0, Q1) =
2r.

6.3.5 The metric Gabriel ball centers field

We now have all required information to detect the centers of metric Gabriel
balls of a set of particles P from its distance field D[P ]. We detect both the
sites being center and the sites being an extremity of an edge center:

centt(x) =





⊥ if t = 0

⊤ if centt(x, x)

⊤ if ∃y ∈ N(x), centt(x, y)

⊥ otherwise;

Here, centt(x, y) is defined as the function which determines whether the
point xy at the middle between x and y is a center. If x = y, then we consider
a site, and if d(x, y) = 1 then we consider an edge. According to our results, in
both cases, we simply need to check whether Q = [xy, rxy;P ] admits a partition
or not. But if P is close enough, we don’t need to dilate it. More precisely, close
enough means here rxy = D[P ]t(x, y). Otherwise, rxy takes the appropriate
value depending on the cellular space and on whether xy is a site or an edge, as
stated in Props. 6.3.4, 6.3.5 and 6.3.6.

Since checking that xy is a metric Gabriel ball center amounts to check that
Q can be partitioned into {Q0, Q1} such d(Q0, Q1) = 2rxy, we introduce the
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closeness relation C2rxy
(y, z) ≡ d(y, z) < 2rxy. Indeed, anytime two sites y

and z are at distance d(y, z) < 2rxy, they cannot belong to different part of
any considered partition. Therefore, {Q0, Q1} exist only if there is at least two
classes of separable sites in Q, i.e. |Q/C+

2rxy
| ≥ 2, where C+

2rxy
is the transitive

closure of C2rxy
. We obtain:

centt(x, y) = |Qt(x, y)/C
+
2rxy

| ≥ 2

Qt(x, y) = { z ∈ B(xy, rxy) | D[P ]t−1(z) + rxy = D[P ]t−1(x, y) }

The last missing piece is to complete the definition of the distance field and
balls to take into account the edges middles:

D[P ]t(x, y) = min{D[P ]t(x), D[P ]t(y)}+
d(x, y)

2

B(xy, r) = B(x, r − d(x, y)

2
) ∪B(y, r − d(x, y)

2
)

6.3.5.1 The resulting cellular automaton

To summarize, the complete cellular automata that draws the metric Gabriel
graph of a set of particles P is the following, where back is defined at page 72.





dp = D[P ]
m = cent[dp]
g = M ′[m, back[dp]]

(6.1)

The evolution of this cellular is shown in Figs. 6.8, 6.9 and 6.10 for hexagonal,
4-connected square and 8-connected square grids. The cellular automaton uses
7 states, which correspond to 3 states for the distances modulo 3, multiplied by
2 states for the g field, plus 1 special state for the particles that always have
dpt(x) = 0 and gt(x) = ⊤. Its neighborhood radius is 2 for the three considered
grids, which can be calculated from Props. 6.3.4, 6.3.5 and 6.3.6.



6.3. Metric Gabriel Graphs on Cellular Automata 87

Figure 6.8: Evolution for the hexagonal cellular space. The two last snapshots
show the final configuration with, firstly back hidden and then back and cent
hidden. Red: particles, gray: D, yellow: cent, green: back
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Figure 6.9: Evolution for the 4-square cellular space
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Figure 6.10: Evolution for the 8-square cellular space
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Conclusion and Perspectives
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Through the three later chapters, we have shown how to use distance in-
formation to solve different problems: uniformizing of the distribution of a set
of particles, constructing of their convex hull and constructing of the metric
Gabriel graphs. The corresponding cellular automata rules have been provided,
their formulation allowing them to be used with no changes on many cellular
spaces, including 3D cellular spaces.

We now comment on the different remaining tasks that can be done for each
of these problems and their building blocks, and with their interesting relation
with other concepts. We also propose different directions in which the work and
the framework can be extended.

7.1 Conclusion on the obtained results

7.1.1 About distance fields

The distance field computation is at the center of our approach, along with the
property linking Lipschitz continuity with finite state, as described in Chapter 3.
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The problems that we have considered using distance fields can also be trans-
lated into problems using wave propagation. In this case, the distance informa-
tion is coded in time, which makes them usable only in synchronous systems. As
an example, for a site to know that it is at the same distance from two particles,
both particles need to emit a wave at the same time, and if the site receives
both waves at the same time, it knows that the same distance has been traveled
from both particles. Using distance fields, the distance information is encoded
directly in the state which makes them more appropriate to use in asynchronous
systems. This makes a link with other works in reaction-diffusion computers [4]
where a solution for the construction of the Voronoi diagram is given using wave
propagation.

Another interesting aspect is the link between our manipulation of the dis-
tance field as a set of dilation, as done in Chapter 6, and a mathematical tool
known as Morse theory. The relation between Morse theory and Voronoi di-
agrams and Delaunay graphs has already been identified in Euclidean spaces.
A comparison between our analysis and an appropriate discrete version of the
Morse Theory needs to be done.

To comment on the relation between Lipschitz continuity and finite-state,
this property is a general tool that can be used for other fields or in other
contexts. Let us illustrate this with the example of a synchronization algorithm.
The synchronization of an asynchronous system can be made by adding a time
counter t to all elements of the system, and requiring an element to update
itself to t+ 1 only if all of its neighboring elements have the value t or t+ 1 in
their time counter. This construction builds a Lipschitz continuous field since
the difference of counter values between two neighboring elements is at most 1.
This implies that the counter can be represented with only 3 states. This is, of
course, just one example and many other example can be found.

7.1.2 About density uniformisation

In Chapter 4, we have presented the density uniformization for the unidimen-
sional cellular space. The generalization to multidimensional cellular spaces
is still an active ongoing work, because of its central importance in the Blob
Computing [24, 23]. The main difficulty is to obtain a perfect result of equal
density as it is the case with unidimensional cellular spaces. The solution we
have presented is based on a perfectly symmetric system, where two computa-
tions of middles are intertwined. In bi-dimensional spaces, this symmetry is lost
since the particle are points, while the border between the regions of particles is
made of lines. In fact, the bi-dimensional system needs to manipulate Voronoi
diagrams, and having a uniform density is described by the property of this
Voronoi diagram to be centroidal: having the particles at the center of mass of
their Voronoi region. This is a whole subject that is out of the scope of this
conclusion chapter. We therefore redirect the reader to the publications on the
Centroidal Voronoi Tesselation for information about the non-cellular automata
case.



7.2. Other applications of the framework 93

7.1.3 About convex hulls and Gabriel graphs construction

In Chapter 5 and 6, the convex hull and Gabriel graph contruction have only
be described for the case of static particles. This is in contrast with the dy-
namic results obtained for the density uniformization. However, we think that
a transformation into a dynamic version should not be too difficult to obtain.
Let us sketch the construction here.

In the system building the Gabriel graph, there is a clear order in the depen-
dencies. The graph edges are build from the Gabriel centers. The centers are
detected from the distance field, which is itself generated by the particles. Also,
in the fields themselves, any distance value always depends on a lower value, and
any edge site depends on a further edge sites. Using enough states, it is possible
to allow each data to remember why it appeared, so that the disappearing of
the cause leads to the disappearing of the effects. A general remark is that any
structure built on top of the distance field can instantiate an directed acyclic
graph of dependency by using the order relation between the distance values.
For the complete convex hull solution, the conv rule is added to the Gabriel
graph system. This rule is not build on top of the distance field. Therefore, a
different order needs to be used.

7.2 Other applications of the framework

7.2.1 Voronoi Diagram Construction

Apart from the three examples tackled here, more structures can be computed
in this framework and thus enjoy the same genericity and portability. We have
already started to port previous work on the construction of dynamical Voronoi
diagrams to this framework. In the same vein as the convex hull problem,
previous work on this problem mainly relies on the manual identification of
the neighborhood to detect [4]. Using our framework, this identification can
be made formally and leads to a precise formulation of the rule. To illustrate,
figure 7.1 shows the desired evolution for a static set of particles. The black sites
correspond to particles, and gray ones to the part of the cellular spaces belonging
to the Voronoi Diagram, i.e. being equidistant to at least two particles.

7.2.2 Firing Squad Synchronisation Problem

The problem studied in this document correspond to geometrical problems, and
the Voronoi Diagram construction too. However, other kinds of problems, not
directly expressed in terms of geometry, can actually be study in our framework.
This is the case for the Firing Squad Synchronisation Problem. In this problem,
all the sites are considered as quiescent, except one which start the process. The
goal is to have all sites to switch to a fixed state at the same time, regarless of
the size of the space, and only with a finite number of state. The difficulty arises
because no site knows the size of space nor its distance to the initiating site. This
difficulty is of geometrical nature and this synchronisation problem is actually
solved using geometrical construction since all know solutions involve recursive
division of space in two parts, generally of the same size. These divisions can
thus be expressed in our framework, possibly providing a more precise analysis
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Figure 7.1: Voronoi Diagram at the edge level precision
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than the existing ones. In particular, it seems that the recursive nature of the
solution correspond to considering an infinite number of distance fields that can
be reduced to a finite number of states. But all this is at a very early stage of
thinking. This thinking has started in ACRI 2010 conference during a discussion
between L. Maignan, J.-B. Yunes and F. Gruau about a new handmade solution
for the 4-square cellular space by H. Umeo [47].

7.2.3 Extension of the framework itself

Another aspect that needs further study is about synchronicity of the system.
Indeed, while our relation framework assumes full synchronous updates, most
part of the presented fields do not rely very strongly on this property. This is be-
cause almost all informations are explicitly represented in the states of the sites.
For example, the density uniformisation solution seems to be easily adaptable
to asynchronous systems, only the movements needs to be corrected to not dis-
appear/reappear at the same but rather appearing before disappearing, which
is a more reliable mechanism. In fact, as shown in the corresponding chapter,
asynchronous updates can even prevent the system to loop with two opposite
signals that never meet, thus ensuring the eventual convergence for a constant
size of the space.

The spaces on which the algorithms actually work without any adaptation is
actually not entirely identified. Of course, it may be different for each problem.
It can be interesting to further study other kind of cellular spaces such as Cayley
graphs and other edge-transitive or vertex-transitive graphs. An identification
of the regular spaces on which all the algorithms, maybe including a Voronoi
diagram construction, may be a good addition to the framework. But of course,
a further goal would be to not depend on an regularity anymore...
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Appendix A

Mathematical Preliminaries

A.1 Metric Spaces

(From wikipedia) Let (M,d) be a metric space. We define a new metric dI on
M known as the induced intrinsic metric, as follows: dI(x, y) is the infimum of
the lengths of all paths from x to y. If dI(x, y) = d(x, y) for all points x and
y in M , we say that (M,d) is a length space or a path metric space and the
metric d is intrinsic.

Definition A.1.1. A metric d : S2 → R over a set S is a function such that:

∀(x, y) ∈ S2; x = y ⇔ d(x, y) = 0 (A.1)

∀(x, y, z) ∈ S3; d(x, y) ≤ d(x, z) + d(z, y) (A.2)

Definition A.1.2. A metric space is a pair (S, d) where d is a metric over S.

The metric is often used with set of points, in which case the former proper-
ties do not hold. Then it is defined as d(X,Y ) = min{d(x, y) | (x, y) ∈ X × Y }.
The notions defined in metric spaces that are used in this paper are: closed
balls, shortests paths, and intervals. We also define what we call dilations.

A closed ball B(c, r) is a generalisation of the concept of disc and sphere
and is defined by its center c and its radius r as being the set of points {x ∈
M | d(c, x) ≤ r}. Extending this definition by allowing the center to be a set
of points, we define the dilation B(P, r) of a set of points P ⊂ M by the same
formula {x ∈ M | d(P, x) ≤ r} or equivalently

⋃{B(c, r) | c ∈ P}.

The interval [x, y] between two points x and y as being the set of points
{z ∈ M | d(x, z) + d(z, y) = d(x, y)}, i.e. the points being in a shortest path
between x and y. One can note that for two points {x, y} ⊂ M , and 0 ≤ r ≤
d(x, y), the set B(x, r)∩B(y, d(x, y)−r) is the same as {z ∈ [x, y] | d(x, z) = r}.

A.2 Minimum Spanning Trees

We give here definitions for the specific cases of a set of points taken from a
metric space, and the considered graph is the complete graph where the cost of
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an edge is the distance between the points composing the edge.

Definition A.2.1. The minimum spanning tree of a connected graph (V,E0)
having a cost associated to each of its edge is the connected subgraph (V,E1)
which is a tree such that the sum of its edges costs is minimal. Here, the cost is
the length of the edge.

Proposition A.2.2 (Cut Property). Let G(V,E) be a connected graph, and
{v0, v1} ∈ E an edge of this this graph. The edge {v0, v1} is part of a minimum
spanning tree of G if and only if there is a partition {V0, V1} of the set of vertices
V , such (v0, v1) ∈ V0 × V1 and d(V0, V1) = d(v0, v1).

Proposition A.2.3 (Cycle Property). Let G(V,E) be a connected graph, and
{v0, v1} ∈ E an edge of this this graph. If the edge {v0, v1} is the longest edges
of a cycle v0, v1, . . . , vl−1, vl = v0 of a the graph G, then it is part of none of
minimum spanning trees of G.
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Appendix B

Source Code

B.1 distance-field.lisp

(in-package #:symfield -lite)

(defun dist -init (src x) (if (funcall src x) 0 1))

(defun dist -iter (src dist x ti)
(cond (( funcall src x ti) 0)

(( funcall src x (1- ti)) 1/2)
(t (apply #’min (mapcar (lambda (y) (+ (funcall dist y (1- ti))

(distance x y)))
(neighbors x))))))

(defun dist -edge (dist x y ti)
(let ((d (/ (distance x y) 2)))

(min (+ (funcall dist x ti) d)
(+ (funcall dist y ti) d))))

B.2 particle-movement.lisp

(in-package #:symfield -lite)

(defun move -iter (in open move x ti)
(let ((nx (neighbors x)))

(or (funcall in x ti)
(some (lambda (y) (and (funcall move y (1- ti))

(funcall open y x (1- ti)))) nx)
(and (funcall move x (1- ti))

(or (not (some (lambda (y) (funcall open x y (1- ti))) nx))
(some (lambda (y) (and (funcall open x y (1- ti))

(funcall open y x (1- ti)))) nx ))))))

(defun dir -open (f cmp x y ti)
(funcall cmp (funcall f x ti) (funcall f y ti)))

(defvar *K* 1000)

(defun bounded -open (d x y ti)
(<= (- (funcall d y ti) (funcall d x ti)) (1- *K*)))

(defun back -open (d x y ti)
(= (+ (funcall d y ti) (distance x y)) (funcall d x ti)))

B.3 density-uniformization.lisp
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(in-package #:symfield -lite)

(defun move -far -iter (f dp p x ti)
(move -iter (field () nil)

(lambda (x y ti) (and (dir -open f #’<= x y ti)
(bounded -open dp x y ti)))

p x ti))

(defstruct density
part ;; Particles
wall ;; Voronoi regions boundaries
dist -p ;; Distances to the particles
dist -w) ;; Distances to the Voronoi regions boundaries

(defun density -init (part0 x)
(let ((wall0 (fnot part0 )))

(make -density :part (funcall part0 x)
:wall (funcall wall0 x)
:dist -p (dist -init part0 x)
:dist -w (dist -init wall0 x))))

(defun density -iter (density x ti)
(struct -field -iter ’density density x ti

((dist -p (dist -iter #’part #’dist -p x ti))
(dist -w (dist -iter #’wall #’dist -w x ti))
(part (move -far -iter #’dist -w #’dist -p #’part x ti))
(wall (move -far -iter #’dist -p #’dist -w #’wall x ti)))))

B.4 convex-hull.lisp

(in-package #:symfield -lite)

(defun local -convex -iter (in local -convex x ti)
(or (funcall in x ti) (funcall local -convex x (1- ti))

(some -pair (lambda (a b)
(and (= (distance a b) (+ (distance x a)

(distance x b)))
(funcall local -convex a (1- ti))
(funcall local -convex b (1- ti))))

(neighbors x))))

(defstruct convex -hull
part ;; Generators
dist ;; Distances to the generator
cent ;; Metric gabriel ball centers
back ;; Shortest path from centers to generators
conv) ;; Convex hull of back

(defun convex -hull -init (part0 x)
(make -convex -hull :part (funcall part0 x)

:dist (dist -init part0 x)
:cent nil
:back nil
:conv (funcall part0 x)))

(defun convex -hull -iter (convex -hull x ti)
(struct -field -iter ’convex -hull convex -hull x ti

((part (part x (1- ti)))
(dist (dist -iter #’part #’dist x ti))
(cent (gabriel -center #’dist x ti))
(back (move -iter #’cent

(lambda (x y ti)
(back -open #’dist x y ti))

#’back x ti))
(conv (local -convex -iter #’back #’conv x ti)))))

B.5 gabriel-graph.lisp
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(in-package #:symfield -lite)

(defgeneric gabriel -radius (s x y))
(defmethod gabriel -radius ((s simplicial -space) x y)

(assert (= (dim s) 2)) (if (eq x y) 1 3/2))
(defmethod gabriel -radius ((s l1-hypercubic -space) x y)

(assert (= (dim s) 2)) (if (eq x y) 2 3/2))
(defmethod gabriel -radius ((s linf -hypercubic -space) x y)

(assert (= (dim s) 2)) (if (eq x y) 1 3/2))

(defun gabriel -ball (dist cx cy r ti)
(let ((dilation -r (- (dist -edge dist cx cy ti) r)))

(<= 2 (count -connected -components
(remove -if-not (lambda (x) (<= (funcall dist x ti) dilation -r))

(neighbors*-edge cx cy :r r))
(lambda (x y) (< (distance x y) (* 2 r)))))))

(defun gabriel -center -edge (dist cx cy ti)
(let ((nr (min (dist -edge dist cx cy ti)

(gabriel -radius *space* cx cy))))
(gabriel -ball dist cx cy nr ti)))

(defun gabriel -center (dist x ti)
(or (gabriel -center -edge dist x x ti)

(some (lambda (y) (gabriel -center -edge dist x y (1- ti)))
(neighbors x))))

(defstruct gabriel -graph
part ;; Generators
dist ;; Distances to the generator
cent ;; Metric gabriel ball centers
back) ;; Shortest path from centers to generators

(defun gabriel -graph -init (part0 x)
(make -gabriel -graph :part (funcall part0 x)

:dist (dist -init part0 x)
:cent nil
:back nil))

(defun gabriel -graph -iter (gabriel -graph x ti)
(struct -field -iter ’gabriel -graph gabriel -graph x ti

((part (part x (1- ti)))
(dist (dist -iter #’part #’dist x ti))
(back (move -iter #’cent (lambda (x y ti)

(back -open #’dist x y ti))
#’back x ti))

(cent (gabriel -center #’dist x ti)))))

B.6 spaces.lisp

(in-package #:symfield -lite)

;;********************************************
;;* Metric and Group and Norm (lite version) *
;;********************************************

(defclass normed -space () ((size :initarg :index -size) spheres balls radius))
(defgeneric dim (s))
(defgeneric zero (s))
(defgeneric add (s p0 p1))
(defgeneric sub (s p0 p1))
(defgeneric norm (s p))
(defgeneric sphere (s r))
(defgeneric ball (s r))
(defgeneric index -size (s))
(defgeneric to-index (s p))
(defgeneric of-index (s i))

;; All normed spaces of this lite version implements zero , add and sub
;; identically. To simplify things , we incorporate ’size slot that
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;; corresponds to the size of the array to be used by fields , so that
;; the dimension of the space is the number of coordinate in the array
;; size.

(defmethod index -size ((s normed -space)) (slot -value s ’size))
(defmethod dim ((s normed -space)) (length (slot -value s ’size )))
(defmethod zero ((s normed -space)) (make -array (list (dim s))

:initial -element 0))
(defmethod add ((s normed -space) p0 p1) (map ’vector #’+ p0 p1))
(defmethod sub ((s normed -space) p0 p1) (map ’vector #’- p0 p1))

;; In order to have fast access to the neighbors of a point , the
;; methods sphere and ball are "memoized ". The first call for a given
;; radius fill the cache and the following calls only read the cached
;; results. The method ’unit -sphere returns the sphere of radius 1,
;; ’extend -radius fills the field ’spheres and ’balls when necessary.

(defgeneric extend -radius (s r))

(defmethod sphere ((s normed -space) r)
(let ((r (floor r)))

(extend -radius s r) (elt (slot -value s ’spheres) r)))
(defmethod ball ((s normed -space) r)

(let ((r (floor r)))
(extend -radius s r) (elt (slot -value s ’balls) r)))

;; The "extend -radius protocol" starts at the instance initialization ,
;; where the fields ’spheres and ’balls are initialized. The edges
;; are specific for each space , the radius extension process is
;; identical for all of space.

(defgeneric unit -sphere (s))

(defmethod initialize -instance :after ((s normed -space) &key)
(let ((edges (unit -sphere s)))

(setf (slot -value s ’spheres)
(make -array ’(2) :fill -pointer 2 :adjustable t :initial -contents

(list (vector (zero s))
(apply #’vector edges ))))

(setf (slot -value s ’balls)
(make -array ’(2) :fill -pointer 2 :adjustable t :initial -contents

(list (vector (zero s))
(apply #’vector (cons (zero s) edges )))))

(setf (slot -value s ’radius) 1)))

(defun vector= (x y) (and (= (length x) (length y)) (every #’= x y)))

(defmethod extend -radius ((s normed -space) new -r)
(let ((old -r (slot -value s ’radius )))

(when (> new -r old -r)
(let* ((edges (elt (slot -value s ’spheres) 1))

(old -sphere (elt (slot -value s ’spheres) old -r))
(new -sphere
(apply #’vector (remove -duplicates

(loop for o across old -sphere append
(loop for e across edges append

(let ((n (add s o e)))
(when (> (norm s n) old -r)

(list n)))))
:test #’vector =)))

(old -ball (elt (slot -value s ’balls) old -r))
(new -ball (concatenate ’vector old -ball new -sphere )))

(vector -push -extend new -sphere (slot -value s ’spheres ))
(vector -push -extend new -ball (slot -value s ’balls))
(setf (slot -value s ’radius) (1+ (slot -value s ’radius )))
(extend -radius s new -r)))))

;;*************
;;* Hypercube *
;;*************

(defclass hypercubic -space (normed -space) ())
(defmethod to-index ((s hypercubic -space) p) p)
(defmethod of-index ((s hypercubic -space) i) i)
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;; L1-norm ;;

(defclass l1-hypercubic -space (hypercubic -space) ())

(defmethod unit -sphere ((s l1-hypercubic -space))
(labels (( recurse (d v r)

(if (zerop d) (when (zerop r) (list (apply #’vector v)))
(loop for i from (- r) to r append

(recurse (1- d) (cons i v) (- r (abs i)))))))
(recurse (dim s) nil 1)))

(defmethod norm ((s l1-hypercubic -space) p)
(reduce #’+ p :initial -value 0 :key #’abs))

;; Linf -norm ;;

(defclass linf -hypercubic -space (hypercubic -space) ())

(defmethod unit -sphere ((s linf -hypercubic -space))
(labels (( recurse (d v n)

(if (zerop d) (when (= n 1) (list (apply #’vector v)))
(loop for i from -1 to 1 append

(recurse (1- d) (cons i v) (max (abs i) n))))))
(recurse (dim s) ’() 0)))

(defmethod norm ((s linf -hypercubic -space) p)
(reduce #’max p :initial -value 0 :key #’abs))

;;********************
;;* Simplicial grids *
;;********************

(defclass simplicial -space (normed -space) ())

(defun simplicial -vertices (dim)
(loop for d from 0 to dim collect

(apply #’vector (loop for i from 1 to dim collect
(cond ((< i d) 1/2) ((= i d) 1) (t 0))))))

(defmethod unit -sphere ((s simplicial -space))
(let (( vertices (simplicial -vertices (dim s))))

(loop for v0 in vertices append
(loop for v1 in vertices when (not (eq v0 v1)) collect

(sub s v1 v0)))))

(defmethod norm ((s simplicial -space) p)
(multiple -value -bind (cp rp) (of-index s (to-index s p))

(loop for i from 0 to (1- (dim s)) maximize
(+ (abs (elt cp i)) (loop for j from (1+ i) to (1- (dim s)) sum

(abs (* 1/2 (- (elt cp j) (elt rp j)))))))))

(defmethod to-index ((s simplicial -space) p) (map ’vector #’floor p))
(defmethod of-index ((s simplicial -space) i)

(let ((p-res (list (elt i (1- (dim s))))) (p-ref ’(0)))
(loop for j from (- (dim s) 2) downto 0 do

(let ((ref (+ (car p-ref) (* 1/2 (- (car p-res) (car p-ref ))))))
(setf p-res (cons (+ (elt i j) (mod ref 1)) p-res))
(setf p-ref (cons ref p-ref ))))

(values (apply #’vector p-res)
(apply #’vector p-ref ))))

B.7 fields.lisp

(in-package #:symfield -lite)

;;;;;;;;;;;
;; Space ;;
;;;;;;;;;;;

(defvar *space*)
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(defun set -space (space size)
(setf *space* (make -instance space :index -size size )))

(defun iter -space (f &key (s *space *))
(array -iter (lambda (x) (funcall f (of-index s x)))

(index -size s)))

(defun inbound (p &key (s *space *))
(every (lambda (x s) (and (>= x 0) (< x s)))

(to-index s p) (index -size s)))

(defun distance (p0 p1 &key (s *space *))
(norm s (sub s p0 p1)))

(defun neighbors (p &key (r 1) (s *space *))
(reduce (lambda (r n) (if (inbound n) (cons n r) r))

(sphere s r) :key (lambda (d) (add s p d))
:initial -value ()))

(defun neighbors* (p &key (r 1) (s *space *))
(reduce (lambda (r n) (if (inbound n) (cons n r) r))

(ball s r) :key (lambda (d) (add s p d))
:initial -value ()))

(defun distance -edge (x0 y0 x1 y1 &key (s *space *))
(let ((* space* s))

(let ((dx0 (/ (distance x0 y0) 2)) (dx1 (/ (distance x1 y1) 2)))
(+ dx0 dx1 (min (distance x0 x1) (distance x0 y1)

(distance y0 x1) (distance y0 y1 ))))))

(defun neighbors -edge (x y &key (r 1/2) (s *space *))
(let ((* space* s) (er (- r (/ (distance x y) 2))))

(union (remove -if (lambda (n) (< (distance y n) er)) (neighbors x :r er))
(remove -if (lambda (n) (< (distance x n) er)) (neighbors y :r er))
:test #’vector =)))

(defun neighbors*-edge (x y &key (r 1/2) (s *space *))
(let ((* space* s) (er (- r (/ (distance x y) 2))))

(union (neighbors* x :r er) (neighbors* y :r er) :test #’vector =)))

;;;;;;;;;;;;
;; Fields ;;
;;;;;;;;;;;;

(defstruct field space curt memo field -iter time -radius)

(defun mkfield (field -init field -iter &key (space *space*) (time -radius 2))
(let* ((* space* space)

(size (index -size space))
(memo (make -array (cons time -radius size ))))

(array -iter (lambda (x) (setf (apply #’aref memo 0 (coerce x ’list))
(funcall field -init (of-index space x))))

size)
(make -field :space space :curt 0 :memo memo

:field -iter field -iter :time -radius time -radius )))

(define -condition access -to-forgotten -past (error)
((field :initarg :field)
(asked -time :initarg :asked -time)
(current -time :initarg :current -time)
(time -radius :initarg :time -radius )))

(defun fieldcall (field x ti)
(with -slots (curt memo space field -iter time -radius) field

(cond
((<= ti (- curt time -radius))
(error ’access -to-forgotten -past :field field :asked -time ti

:current -time curt :time -radius time -radius))
((<= ti curt)
(apply #’aref memo (mod ti time -radius)

(coerce (to-index space x) ’list )))
(t (setf curt (1+ curt))

(let ((* space* space) (offs (mod curt time -radius))
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(global -rule (lambda (x ti) (fieldcall field x ti))))
(array -iter (lambda (x)

(setf (apply #’aref memo offs (coerce x ’list))
(funcall field -iter global -rule

(of-index space x) curt )))
(cdr (array -dimensions memo ))))

(fieldcall field x ti)))))

(defun fnot (f) (lambda (x) (not (funcall f x))))
(defmacro field ((&key (x (gensym "x") xp) (ti (gensym "t") tip))

&body body)
‘(lambda (,x ,ti)

,@(when (not xp) ‘((declare (ignore ,x))))
,@(when (not tip) ‘((declare (ignore ,ti))))
,@body))

(defmacro struct -field -iter (struct sfield x ti system)
(let* ((names (mapcar #’car system))

(codes (mapcar #’cdr system))
(result (gensym)) (nti (gensym))
(updateds (mapcar (lambda (n) (gensym (symbol -name n))) names))
(cycles (mapcar (lambda (n) (gensym (symbol -name n))) names )))

‘(let ((,result (make -instance ,struct))
,@(mapcar (lambda (x) ‘(,x nil)) updateds)
,@(mapcar (lambda (x) ‘(,x nil)) cycles))

(labels ,(mapcar (lambda (name code updated cycle)
‘(,name (,x ,nti)

(cond ((not (= ,nti ,ti))
(slot -value (funcall ,sfield ,x ,nti)

’,name))
(,updated (slot -value ,result ’,name))
(,cycle (error "Cycle detected "))
(t (setf ,cycle t)

(setf (slot -value ,result ’,name)
(progn ,@code))

(setf ,updated t)
(slot -value ,result ’,name )))))

names codes updateds cycles)
,@(mapcar (lambda (fn) ‘(,fn ,x ,ti)) names)
(values ,result )))))

B.8 example.lisp

(in-package #:symfield -lite)

(defun test -density -uniformization (part0 max -time)
(labels ((part0 (x) (eq 1 (elt part0 (elt x 0))))

(dens -init (x) (density -init #’part0 x)))
(set -space ’l1-hypercubic -space (list (length part0 )))
(let ((dens -field (mkfield #’dens -init #’density -iter )))

(loop for ti from 0 to max -time do
(iter -space (lambda (x)

(let ((res (fieldcall dens -field x ti)))
(format t

(cond ((density -part res) "==")
((density -wall res) "%%")
(t " "))))))

(format t "~%")))))

(defun test -local -convex -hull (part0 max -time)
(labels ((part0 (x) (eq 1 (elt (elt part0 (elt x 1)) (elt x 0))))

(conv -iter (conv x ti) (local -convex -iter (field () nil) conv x ti)))
(let ((h (length part0))

(w (length (car part0 ))))
(set -space ’l1-hypercubic -space (list w h))
(let ((conv -field (mkfield #’part0 #’conv -iter )))

(loop for ti from 0 to max -time do
(loop for y from 0 to (1- h) do

(loop for x from 0 to (1- w) do
(let ((res (fieldcall conv -field (list x y) ti)))

(format t "~a " (if res 1 0))))
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(format t "~%"))
(format t "~%"))))))

(defun test -gabriel -graph (part0 max -time)
(labels ((part0 (x) (eq 1 (elt (elt part0 (elt x 1)) (elt x 0))))

(graph -init (x) (gabriel -graph -init #’part0 x))
(graph -iter (graph x ti) (gabriel -graph -iter graph x ti)))

(let ((h (length part0))
(w (length (car part0 ))))

(set -space ’l1-hypercubic -space (list w h))
(let ((graph -field (mkfield #’graph -init #’graph -iter )))

(loop for ti from 0 to max -time do
(loop for y from 0 to (1- h) do

(loop for x from 0 to (1- w) do
(let ((res (fieldcall graph -field (list x y) ti)))

(format t (cond
((gabriel -graph -part res) "X ")
((gabriel -graph -cent res) "C ")
((gabriel -graph -back res) "B ")
(t (case (mod (gabriel -graph -dist res) 3)

(0 "! ") (1 ". ")
(2 ": ") (t " ")))))))

(format t "~%"))
(format t "~%"))))))

(test -density -uniformization
’(0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
210)

(test -local -convex -hull
’((0 0 0 0 0 0 0 0)

(0 1 0 0 0 0 1 0)
(0 0 0 0 0 0 0 0)
(0 0 0 0 1 0 0 0)
(0 0 0 1 0 0 1 0)
(0 0 0 0 0 0 0 0)
(0 1 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0))

21)

(test -gabriel -graph
’((0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 1 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0)
(0 1 0 0 0 0 0 0 0 1 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 1 0 0 0 0)
(0 1 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0))

8)
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